
[image: image115.png]
User manual
Wietse Dol

December 2009
Contents
31. Introduction

62. The Data Viewer tab sheet

83. The Data sources tab sheet

104. The Classifications and Time tab sheet

125. The Link Classifications tab sheet

146. Menu items

197. Popup menu from “Data Viewer” grid

208. Converting SQL to GDX

289. Converting ASCII data/files

3610. Aggregate or recode data (under development)

3811. Looking for data alternatives and HarDFACTS

4312. Add/edit knowledge (Meta-information) to Data Viewer tree

4613. Print meta information

4714. Find data by text in the tree

4915. Find data by Classification or Elements

5116. GDX and CSV tools

5116.1 GDX Browser

5116.2 GDX info

5216.3 GDX merge

5616.4 xxx2GDX: Excel and ODBC to GDX

5816.5 CSV to GDX, GDX to CSV, CSV to CSV, GDX to GDX tools

6517. Eurostat

7018. Literature

7019. Abbreviations

7120. GAMS and MetaBase

7120.1 Introduction

7520.2 GAMS Examples

8221. Display format

1. Introduction

When MetaBase starts, you will see some nice fractal images in the opening screen. These fractals express how we think about research and data. Fractals are the visual result of “Chaos theory” and show that even when we have something very chaotic/incomprehensible, the image still can contain structure and can be useful in day-to-day live (see: http://en.wikipedia.org/wiki/Fractal). For research data the same applies. Data from different data suppliers look like fractals, i.e. we do not fully understand the content. Only after thorough investigation and especially additional information, the content of the data becomes clear, and can be used for our own research questions.

In mid 2006, LEI started with a program called MetaBase. The idea behind the software was that data from different data suppliers should be available through one piece of software, and that all extra information worthwhile for researches should be added to the data. Hence the name MetaBase:

[image: image2.png]- A metabase (sometimes called a metadatabase or metadata repository) is a database for storing metadata (data that describes data) for a specific purpose. For example, a metabase might include metadata about all configuration information in a system gathered from a number of sources. A physical metabase is one in which the metadata is actually collected into a single place before it is accessed. A virtual metabase is one in which metadata is gathered on the fly when it is needed, possibly when a program is executing.

Many data suppliers (e.g. Eurostat, Faostat, USDA, FAPRI, OECD) have their own internet sites where you can query and download data. These sites often do not easily allow downloading large datasets (needed by researchers) and most of all these web-sites have very poor possibilities of searching for data. You need to be an expert before getting the data you need for your research. When you need data for your research and this data isn’t fully available at one data supplier, you have to download data from different suppliers. Different data from different data suppliers also means learning different pieces of software for querying and retrieving data. Combining data from different data suppliers is very difficult and needs a lot of data knowledge and computer skills. The data problem grows exponentially when you have additional (company or model) data and want to use this for your research as well.
One piece of software that will offer data from different data suppliers sounds very nice. When this data becomes easily accessible, people start to ask for more support of their data issues. What started as a simple piece of software, grew in complexity and functionality. Some projects at LEI needed extra functionality of MetaBase and the group of users grew within, but also outside LEI. Especially data issues like: combining data, finding and estimating missing data, and performing data consistency checks have a lot of attention at LEI and MetaBase has some tools for dealing with data problems.
Besides having all data and information available in one program, MetaBase has for researchers two important advantages:

1. You can search over the data (Chapter 14), i.e. you can even search inside the data (Chapter 15).

2. MetaBase will check if for a given data table there are alternatives containing the same type of data, e.g. MetaBase will show that certain FAO tables and Eurostat tables contain the same information (Chapter 11).
This manual will describe the current functionality of MetaBase. The coming years MetaBase will accumulate more functionality and this manual will be updated at regular intervals. Please have a look at this manual before you start using MetaBase. When you just want to use MetaBase to retrieve data for your research, you should at least read Chapter 2 and also getting acquainted with the Data Explorer and the Data Selector. These two programs have a separate manual and the functionality of the software isn’t explained in this manual. The Chapters 14 and 15 will explain how you can search trough all available data in MetaBase to find the data you need for your research.
When you have a growing interest in data and the functionality of MetaBase, you should read the Chapters 3-7. These chapters will tell you about data sources, classifications and concordances between classifications. These concordances play a crucial role when you want to combine data from different data suppliers (see Chapters 10 and 20).
Getting data is only the first step in research. After having the basic data you need to check and correct the data, make your own aggregations etc. MetaBase will grow into a system that will make a lot of these tasks easy by using a simple user interface. Since not all functionally is programmed yet; and since data experts also want more than the simple user interface supports; you can use GAMS code to do simple and complex calculations with all the data available in MetaBase. Using GAMS is explained in Chapter 20, and the available examples will give you a good idea what you can do with GAMS. In the near future we hope to have MetaBase connected to the R-environment (www.r-project.org), i.e. making use of the statistics, econometrics and graphics functionality of the freeware software program.
MetaBase needs to be updated and when new data becomes available, this data needs to be added to MetaBase. Converting data into a format suitable for MetaBase is explained in the Chapters 8, 9 and 16. Since MetaBase isn’t only about the data but also about adding meta-information the Chapters 12 and 13 will explain how to add meta information to the system. For Eurostat data special software has been developed to download and convert the data into MetaBase. The whole procedure and software is explained in Chapter 17 and this chapter can also been seen as a good example of the importance to have an automated procedure when data is often updated.
Data suppliers in MetaBase are defined as:
· official statistical offices (e.g. Eurostat, FAOstat, OECD)

· computer models (input and output data of e.g. ESIM, AgMemod, Aglink, Capsim, Gtap) and

· data created/collected by a researcher or a group of researchers and these researchers like to share their data with others.
Besides this manual there are also an installation manual and a technical manual on MetaBase (see Chapter 18 for a list of all documentation relevant for MetaBase). In the installation manual it is described how MetaBase is installed on a network drive and which hardware is needed to run MetaBase. In the technical manual the contents of the database (tables) is explained in more detail. The current software does not have a full set of tools to add/edit/delete the database and hence to add/edit/delete the functionality of MetaBase. This means that some tasks are to be done on a database level and not through a tool in MetaBase. This manual work is error prone and will be automated in near future. The speed of this happening will also depend on the other wishes that need implementation… Recently the Database Management Tool (DMT) was written, i.e. this tool does certain checks and cleans the database and does aBB renumbering of the ID fields (see the “Database Management Tool for MetaBase” manual).
Note that MetaBase is a tool to support a researcher. This means that MetaBase can never fully replace the data expert. When doing critical research it is always good to consult a data specialist and show him/her what you want or need for your research. MetaBase will make the live of the data specialist easier and makes it easier to communicate between researchers.
[image: image3.png]
When you start MetaBase the system will ask for a username and password. The login will influence what you are allowed to see/select in MetaBase. It is possible to have a guest login, i.e. use any username and use the password guest To exploit the full functionality of MetaBase, you need your own account. Please ask you MetaBase manager for an account.
MetaBase is designed to be transportable, i.e. it is possible that you can make a copy of (parts of) MetaBase to a hard disk, a memory pen etc. and use MetaBase on another computer/notebook. Ask your MetaBase manager (at LEI send LEI.Software@wur.nl an email) how to do this and inform yourself on the legal implications when taking certain data outside your institute.

Currently we are working on a web version of MetaBase, please check our www3.lei.wur.nl/metabase website. The web version will only support the basic functionality of MetaBase, i.e. showing the trees of available data, and classifications. When selecting a data table you can inspect it by using the web Data Viewer, or download the data to your computer and inspect it with the Data Explorer. For most people this functionality is enough, but if you want to do more (see this manual) you will need the MS-Windows version of MetaBase.
2. The Data Viewer tab sheet
After starting MetaBase a window containing several tab pages is shown (see Figure below). The following chapters will explain the tab pages in more detail. The first tab page “Data Viewer” is explained in this chapter and it shows a tree of all available data and meta information. Trees play a very important role in MetaBase. As soon as you have a lot of information, showing this information in a list makes browsing and finding something very difficult. When presenting the information in a tree, it become easier to browse and find things. Also note that information doesn’t have to appear only on one place in a tree, but the same information can be presented in different nodes of the tree.
[image: image4.png]
The folder icon [image: image5.bmp] is used to organize the available data in such a way that it is easy to find data (as folders on a hard disk, for search facilities see Chapters 14 and 15). The current Data Viewer tree has data organized by data supplier. By clicking on the [image: image6.bmp] you will expand a tree node (showing the children of a tree node), and clicking on the [image: image7.bmp] you will collapse a tree node (hiding the children). When you click on a node, the program checks if there is meta information available for the selected node. When there is meta information available it is shown at the bottom of the window (i.e. in the “Information” box). Meta information can be text, but it can also be links to files, documents and web pages. An important meta information will be the “Contacts” section where one can find information which data expert(s) to contact for questions. The tree node that contains data is displayed with the [image: image8.bmp] icon. If you double click on this icon the Data Explorer is started and the content of the selected data table is shown. Instead of data tables (i.e. GDX files) you can add other file types to the tree, e.g. [image: image9.png] for Excel files, [image: image10.png] for PDF files, [image: image11.png] for MS-Word documents, [image: image12.png] for SQL2GAMS files (see Chapter 8) and, [image: image13.png] for GAMS files. When you double click on one of the icons the appropriate program will be started and the selected content will be shown.
Below you will find an example of the Data Explorer. The functionality of the Data Explorer is described in a separate manual (see the literature references). Please read this manual, i.e. Chapters 1 and 2, and the Sections 3.1, 3.2, 3.17, 3.18, 3.19, 3.14, 3.10, 3.11, 3.12, 3.13 (in the order as indicated) to understand the basics. With the Data Explorer you can make the data table you want, export it to e.g. MS-Word or MS-Excel, create a graph or make a GIS map. The Data Explorer can do some very advanced things (e.g. statistics, outlier detection etc., see Chapters 4-9) but the basic usage is simple.
[image: image14.png]
The Data Explorer works very well for data files that aren’t too big. When data tables are large, you probably want to make a selection of the available data first and then after the selection browse the data. This is exactly the functionality of the Data Selector. The Data Selector has most of the functionalities of the Data Explorer, but also has some additional ones (see the Data Selector Manual). It is difficult to specify a generic rule when to open the Data Explorer or the Data Selector, but when the size of the GDX files is lower than 3-5 Mbytes the Data Explorer is useful, for files larger than 5 Mbytes it is better to start the Data Selector. Since GDX is a binary and zip-compressed file, 5 Mbytes will contain a lot of data values, so you can inspect files in the Data Explorer that will not fit into Excel (Yes even Excel 2007 has a limit to the number of rows/columns).
When you right click (click with the right mouse button) in the “Data Viewer” tree of MetaBase a popup menu is shown. The content of the popup menu will depend on the currently selected node and all menu items of the popup menu are explained in Chapter 7. The main menu items shown on the top of the screen (Find, Tools, etc.) are all explained in Chapter 6.
3. The Data sources tab sheet

When you have selected a data table in the “Data Viewer” tab sheet, the content of that data is displayed on the “Data sources” tab sheet. You can also go directly to the “Data sources” tab sheet and select one of the available data sources from the Data sources combo box. A data source is a description of the data table of a data supplier. A data source contains meta information, but the most important part of the data source is the description of the data columns, the classifications used and how MetaBase will generate a GDX file (the data format used within MetaBase). Data sources (as shown below) are declared in the database and can be used for more than one data table. Even when you do not have a Data source declared, MetaBase will show information on the columns, and classifications of the data table you have selected in the “Data Viewer” tab.
[image: image15.png]
In the upper left corner of the tab sheet in the “Info” box, all available meta information on the data source is shown. To the right in the “Columns” grid you will find the columns used in the data set, i.e. a column name, if it is a primary field (i.e. it describes the data content), if there is meta information available on a data column and which classification is used. If you double click on any cell of the grid the classification that is used in the selected data column is displayed (see Chapters 4 and 5). If you click on any of the “Info” cells in the columns grid that contain meta information, this meta information is shown, e.g. clicking on the info cell of the “nace” column results in:
[image: image16.png]
A data source is not only a description of the current table of a data supplier, but the data source can often being applied to several tables of a data supplier, e.g. we have an international trade data table which contains exports in Euros, another table contains imports in Euros, another table contains exports in quantities and finally there is a table with imports in quantities. All these four tables can use the same data source and introducing the concept of a data source makes reusing it possible. As shown in the example it can even happen that tables from different data suppliers use the same data source (e.g. COMEXT data from Eurostat and COMTRADE data from FAOSTAT all contain the same structure of international trade data).
When starting MetaBase it seemed logical to store data into a database and hence on the left lower side of the “Data sources” tab sheet you will see the “Data” grid, i.e. the table in the database that contains the data. Since most data suppliers do not present their data in databases (often CSV, TSV or Excel files are used), it was decided to store the real data of the data supplier outside the MetaBase database and convert all data formats into one common format. Since the data is often used for further calculations and because they are often the starting point for our (GAMS) models, it was decided to convert all data from different data suppliers into the GAMS GDX format. The Gams Data eXchange (GDX) format is a compressed binary format and hence very small. Together with the GDX file a so called GREF file (ASCII file) is created that contains all meta information about the data (e.g. the descriptions of all the elements used in a classification). The lower right part of the “Data sources” tab sheet named “Output” specifies which meta data of the classifications is used to create a GREF file. The “Make GDX” button will take the database table and convert it into a GDX file. The “Make GAMS ref” button will create the GREF file. After pressing these buttons, MetaBase will use these GDX/GREF files in the Data Explorer to shows you the data when you double click on a table in the “Data Viewer” tab sheet. Since most data suppliers offer data in a CSV like way, MetaBase often uses the tools described in Chapter 9 to convert data from a data supplier into GDX/GREF. Also here the “Data source” definition can be used to create GREF files.
4. The Classifications and Time tab sheet
Trying to understand the data often means understanding which classifications are used within the data. In the tab sheets “Classifications” and “Time” all classifications defined in MetaBase are available for inspection. All classifications that are defined over time periods are stored under the special tab sheet “Time”, all other classifications are stored under the tab sheet “Classifications”. The reason why MetaBase makes a distinction between these two types of classifications is that time classifications play an essential role in conversion of data (e.g. converting US-dollars into Euros). To see the contents and meta information of a classification you select the name from the “Classification” combo box (e.g. NACE 1.1). When the elements of a classification form a tree, this tree is displayed, and by clicking on the elements you can get meta information about the element in the box below. The elements of a classification consists of an identifier (shown in blue, and often called ID’s) and a description (green color). The identifier is used in the original data file and the description is often wanted when you display a table. Some data suppliers use the same classification but the elements have different identifiers, e.g. for countries the id’s 31, 031, NL and NLD are all used to describe “The Netherlands”. Having the same classification but different ID’s is possible in MetaBase, i.e. this is done by using the “Conversion” combo box. When an element isn’t available in a certain “Conversion” the original element ID is shown in a red color.
[image: image17.png]
MetaBase has many classifications and selecting them from a list/combo box is not practical. Hence in MetaBase it is possible to show all available classifications in a tree. This is done by clicking on the [image: image18.bmp] icon. In the tree (see below) the classifications are grouped and it becomes easier to find a classification (or discover that there are many classifications used for the same purpose).
[image: image19.png]
[image: image1.png]
When you want to find a classification you can right click on the tree, then from the popup menu select one of the find options (explained in more detail in Chapter 7).

[image: image20.png]
5. The Link Classifications tab sheet

Classifications are the cornerstones of data and when you do research it is important to collect data from different data suppliers and then compare or merge the data. When data suppliers use different classifications, the data first has to be converted in such a way that the data sources use common classifications. For many classifications there are concordances tables, i.e. how to convert one classification into another. In MetaBase we tried to visualize concordances, i.e. instead of having big matrices/spreadsheets we tried to show it in a tree:
[image: image21.png]
Suppose you want to convert the “FAOSTAT SUA Products” classification into a “HarDFACTS Commodities” classification. Then you select the first one as the Child classification and the second one as the Parent classification. MetaBase will read the concordance table and then build a tree. All elements from the Child classification are shown in red and all elements from the Parent are green or blue. All elements from the Child that are not attached to the tree are shown (in red) in the left corner box and all elements from the Parent that have no Child element attached to it are shown in the right lower corner box (in green). So Parent elements that are blue indicate that one or more Child elements are connected to it, or that all children from that element contain attached Child elements.

When you press one of the [image: image22.bmp] icons, the classifications tree is shown (see Chapter 4) and MetaBase will tell you if a classification can be linked to (Parent) or linked from (Child) another classification. In the “Link Classifications” tab it is not only possible to see concordances, but also to create/change concordance. For instance you can take any Child element from the left corner and drag and drop them onto a Parent element in the tree. Also right clicking the mouse on the tree shows a popup menu with actions are possible to create/maintain the concordance:
[image: image101.png]The “Add element to root” will add a new element to the root of the Parent classification. The “Add element to node” will add a new Parent element as a child to the currently selected Parent element/node. “Delete node” will delete the currently selected node (and its children). The elements in all trees are ordered and the ordering can be changed by selecting a node and then click on “Move up” or “Move down”. The “Excel” menu item will take the current concordance and create an Excel file out of it. The “GAMS text” item will create GAMS code for the current selected concordance, i.e. defining the sets and a parameter with the concordance. All other popup menu items are explained in more detail in Chapter 7 and these menu items can be seen in almost all other trees as well.
MetaBase knows which concordances are available and whenever you click on a data table in the “Data Viewer” tab sheet, MetaBase can investigate (see “Check HarDFACTS for this node” in Chapter 7) if there are more data tables that can be converted (with concordances) into something that can be merged/compared. When tables are found they are shown on the right hand side of the window and it is then possible to select these data tables and convert them into one new table (see example below and see Chapter 11 HarDFACTS).
[image: image23.png]
6. Menu items
Find
[image: image102.png]Having a lot of data is nice, but since you do not know what is available and how to find it, it is important that you can search trough the data. There are two search possibilities. The first search option will search for text in the tree of the “Data Viewer” tab sheet. The second option will search for text in the contents of the actual data tables (and hence takes more time). When you click on this menu item a window as shown on the right will appear. The options 1 and 2 are discussed in Chapter 14. The options 3 and 4 is discussed in Chapter 15.
[image: image103.png]
Tools
MetaBase has a lot of functionality. Many of the tools you can use outside MetaBase as stand-alone programs. When data is converted into GDX and GREF files (see Chapters 8 and 9), two files are used to log errors/problems. The first file is the warning file. When an element in the data isn’t defined in the classification then this is written to the warning file (warnings.txt):
Date: 10-05-2008 21:33:27

Data file: E:\LEI\MetaBase\DMT\ReorganisedIptsDataSets\GDPDAT_NAMA_GDP_NAMA.gdx

The element D11 isn't defined in classification t_rows

When the creation of a GDX fails (especially useful in the Eurostat batch conversion, see Chapter 17) an error is written to the failed conversion file (bugreport.txt):

Date: 24-05-2008 09:46:02

E:\LEI\MetaBase\eurostat\URB_VLCA.tsv

The “Check files for batch updating” makes it possible to see if data has been updated, i.e. after pressing this menu item, MetaBase will check for all data in the “Data Viewer” tab sheet if there is a .CSV or .TSV (comma or tab separated file) that is newer than the GDX file. If this is the case the table is added to a list that can be converted in a batch.
[image: image24.png]
Instead of using the MetaBase program, you could use the MetaViewer program. This program has not all functionality of MetaBase, but will show the data, meta-information, and the classifications. The “Make parameter tree file” menu item will generate a file that is used for the MetaViewer program (i.e. this program doesn’t need to query the database on startup and hence is much faster). For most users the MetaViewer is the preferable program. Whenever new data is added to the tree of the Data Viewer tab, this menu option should be run.
Since almost all data stored in MetaBase is a GDX file, you could start writing GAMS code for data comparison, data aggregation, combining data, transforming data etc. etc. The “Create GAMS code in MetaBaseGAMS” menu item will take all data and create in the MetaBaseGAMS directory all GAMS code (e.g. set definitions) needed to use the data within GAMS. Some powerful examples are stored in the MetaBaseGAMS\Calculation directory (see also Chapter 20) and show the power of GAMS for especially aggregations. Note: the MetaBase administrator will use this option to create GAMS code. You do not need to press this button when you are not a MetaBase administrator.
[image: image104.png]The “ASCII” menu item will invoke a tool that is described in more detail in Chapter 9. The “SQL to GDX” is discussed in Chapter 8. The “Eurostat TSV to CSV” tool will take a tab-separated file from Eurostat (not a real .TSV file, but with additional columns) and convert this into a .CSV file. The .CSV file can be converted into GDX by our ASCII tool.
[image: image105.png]On the old New-Cronos CD-roms of Eurostat there is some data that isn’t available on their web-site. This data is stored in a .DFT or .DFZ format. The “Eurostat DFT/DFZ to CSV” tool will convert this old format into a CVS file.
Gtree is our own GAMS editor (see the Gtree manual). The “GDXmerge 2”, “xxx 2 GDX” and “GDX browser” are all GDX tools that are discussed in Chapter 16.
Eurostat
[image: image106.png]The 4 steps of this menu item are all explained in Chapter 17, the two conversion tools are already discussed above.
[image: image107.png]Options
In the “Show Classifications” you can choose if you want to see one or two classifications in the “Classifications” tab sheet. This is especially helpful if you want to compare two classifications.
The maximum column width of a data column in the ASCII tool can be set with the “Max. column width” option. By default the ASCII tool will size the column to fit the data that is shown in the column
The “Show table names in Data Viewer tab” option will show the name of the table in the Data Viewer tree (at the end of the description and between braces.
The “Show GAMS names in Data Viewer tab” option will show the GAMS name in the Data Viewer tree (used for creating the GDX file and used for automatically create GAMS code from MetaBase, e.g. see Chapter 20). When “Show tables names” and “Show GAMS names” are both checked and both would have the same name, only one of them is shown in the tree.

It is possible to specify tree branches in the Data Viewer tab tree (the Presentation tree) and give them the attribute “no show”. By default these branches are not displayed, the “Show complete Presentation tree” will make these hidden branches visible.
By default confidential tables are not shown. The “Show confidential tables in Data Viewer tab” will show the confidential tables.
Compressed GDX files are smaller than uncompressed ones. The “Compress GDX” option will indicate if a GDX should be compressed. In the “GDX version” menu item you can select which GDX version will be used when creating new GDX files in MetaBase.
The “Always use EurostatConvert for TSV files” options will use the EurostatConvert tool and not the internal conversion tool. EurostatConvert is faster and more stable, and is the preferred default.
When showing meta information, also some nice fractals are displayed (right bottom corner of the window). With the “Show fractals” option you can enable or disable this feature. Also the speed in which a new fractal is show can be influenced by the “fractal timer interval”.
[image: image108.png]
The “Check GDX files” will check all the tables in the Data Viewer tab tree and when a table does have a corresponding GDX file it will show that table in the tree with a blue asterisk in front of the table.
The “Check GDX on startup” will do the check explained above, when MetaBase starts. This is time consuming and only useful for MetaBase managers.
The “Check data alternatives automatically” will check if a selected data table can be combined/converted with other tables into one new table (see Chapter 11). A table can be converted into the selected table if all classifications are the same or if there are concordances that can be used, and also that the dimension(s) in the tables are the same. Many data suppliers do not specify a dimension for their tables, hence you can use the “Check dimensions for data alternatives” and check/not check the dimension of tables.
With the “Font” option you can select the screen font. With the “Font size for trees” you can select the size of the font that is used within the trees.
The “Choose Skin” option will allow you to select a new skin for the MetaBase program. A skin will change the look and feel of your program and hence you can select a skin you are comfortable with looking at.
The “Elastic font” option will use the elastic font, i.e. when you resize a window all the fonts used in that window are also being resized.
The “Maximize window on startup” will maximize the MetaBase window (full screen) at startup.
About, Help and Exit
[image: image25.png]
The “About” menu item will show the about box with nice fractals and information on the version number and the copyright holder. The “Help” menu item will invoke the help documentation, i.e. the content of this manual with hyperlinks. The “Exit” menu item will quit MetaBase.
7. Popup menu from “Data Viewer” grid

[image: image109.png]When you click with the right mouse button on the tree in the “Data Viewer” tab, a popup menu like the one shown on the right will appear. The “Show INC/SQL” will start the SQL2GAMS program and shows the selected contents (see Chapter 8). The “Show TSV” will start the ASCII viewer (see Chapter 9) and shows the contents of the tab separated file. The “Show CSV“ will start the ASCII viewer and show the comma separated file. The “Show GDX” will start the Data Explorer and show the content of a GDX file (i.e. when you double click on a node in the tree the GDX file will be opened. For all the functionality of Data Explorer see its manual). The “Aggregate/recode” option will start the Aggregate window (see Chapter 10). With the “create GREF” we can (re)create a GREF file with all the necessary meta-information (i.e. descriptions of the elements). The “Add/Edit HarDFACTS” is explained in Chapter 11 and the “Add/Edit knowledge” is explained in Chapter 12. The “Print Knowledge” will print the current meta-information (see Chapter 13). With the “Check data alternatives for this node” MetaBase will check if other data tables can be combined/converted with the current selected one into one new table (see Chapter 11). The “GAMS text” option will write GAMS code (Sets, Elements etc.) you can use for the currently selected parameter.
The “Find”, “Find from node”, “Find again” and “Find from node Aagain” are explained in Chapter 14. Chapter 15 is devoted to “Find in Classification/Elements” and “Find in Classification/Elements again”.

The “Collapse children”, “Expand children”, “Full collapse”, “Full Expand”, and “Print tree” are all operations that are available on all trees in MetaBase.
It is possible to specify tree branches in the “Data Viewer” tab tree (the Presentation tree) and give them the attribute “no show”. By default these branches are not displayed, the “Show all nodes” will make these hidden branches visible. The “Show selection” will only show the data tables with a “show” attribute.
8. Converting SQL to GDX
Introduction

To use the data from different data suppliers in aggregations or for comparing, checking and viewing the data and also for writing software, it becomes necessary that all the data is transformed to one file format. From our years of experience in building models in GAMS and using data within those models we decided that MetaBase will convert data into a so called binary GDX file and a GREF file. The Data Explorer and Data Selector (see their separate manuals) in MetaBase will load the data and then use additional knowledge (i.e. classifications) to show the data in a multi dimensional grid, a GIS map or a graph. Further the programs facilitates the export of selected data to Excel or Word and will allow to show for each time series some statistical information and outliers. The main reason for using GDX is straight forward: GDX is a compressed binary file and hence very small, this makes storage and distribution of the files easy. The GREF file contains all the meta-information needed for displaying the data (e.g. labels of classification elements).

Since data suppliers present their data not in GDX format but in other formats (e.g. ASCII, CSV- or tab- separated files, Excel, and in databases), we have to convert the original data into GDX. For facilitating the data conversion, software, also called parsers were written. In this chapter we will explain the tool to convert any database table or SQL statement from any type of database (or even Excel sheets or CSV file) into a GDX file. The next chapter will explain how ASCII files and especially CSV files are converted into GDX. Also note that in chapter 16 some very useful GDX tools are explained. All these tools are made to make it possible that anyone should be able to add new data to MetaBase. It also makes it possible to update MetaBase when the data suppliers presents updates of the data.
Converting SQL to GDX: SQL2GAMS
[image: image26.png]
The SQL2GAMS tool is a standalone piece of software (sql2gams2.exe) but is also fully incorporated into MetaBase with additional functionality, i.e. click on the main menu item “Tools” and then select “SQL to GDX”, or by right clicking on a data table in the “Data Viewer” tab and selecting the “Show INC/SQL” popup menu item. The tool in MetaBase makes it possible to add meta information (i.e. classifications) to the data and generate a GREF file. The standalone tool is a windows program but the conversion of data can be automated in e.g. batch files or console commands. This is done by creating a text file with SQL2GAMS parameters and then invoke the software and tell it to execute the parameter file (see the end of this chapter). The tool is called SQL2GAMS2.exe because GAMS already has a tool GDX2GAMS.exe with less functionality.
The tool has two tab sheets. In the first one “SQL2GAMS” you can convert the data from the database into GDX. The second tab sheet “Data” is used to inspect the contents of the database and to test if your SQL statement is correct. The data from the database is converted into GDX by following the 5 steps as presented in the “SQL2GAMS” tab sheet.
Step 1. Database connection
[image: image110.png]Specify the database connection. The connection string can be generated with a wizard if you click on the “Build” button (the wizard is shown in the Figure at the left). The data connection is an ADO connection and hence it is easy to connect to any database (e.g. DB, Access, SQL-server, Oracle etc. see some examples at the end of this Chapter or Google on the Internet). You can also specify advanced connection settings (e.g. passwords). To connect to an ODBC connection or to Excel see Chapter 16 (i.e. xxx2GDX). For calculations and aggregations we use GAMS. GAMS supplies good tools for reading and writing Excel as well as GDX files.
When you have entered your connection string, the database connection is created (it will give an error if something went wrong when connecting to the database). You could now go to the “Data” tab sheet and inspect what is available in the database and e.g. start creating a SQL statement.

Step 2: SQL statement

Type the SQL statement you want to execute. Even better: go to the “Data” tab sheet, create and check the SQL statement. When satisfied parse the SQL statement into the SQL statement editor of the “SQL2GAMS” tab sheet. You can use the [image: image27.png] icons to increase or decrease the font size used for the SQL statement. By clicking the [image: image28.bmp] icon you will open a window where you can inspect the current contents of the query. Below we will explain how you can use parameters in your SQL statement to make it more generic. Note that SQL statements can even being implemented on Excel files and ASCII/CSV files, selecting only parts from the data, making this tool very useful/powerful.
Step 3: specify columns

For creating a GDX file you have to specify which columns of the SQL table contain primary values (the columns that uniquely identify a record) and which columns contain data. To check which columns are created by the SQL statement press the “Check data” button. Then check which columns are primary and which contain data (hence you can even skip columns from the conversion). If you have more than 1 data column the GDX file will contain an additional primary column with the data column names as its elements. The default name of that primary column will be “MBdata”, but by clicking on the “Data column” button you can change that name into something else. With the “Classification” (Only available in MetaBase and not the stand-alone tool) button you can specify which classification is used in the data column (as is done with primary columns, on the next page).

Step 4: Parameter name and description

When creating a GDX file, the SQL data is saved under a parameter name and description. In step 4 you can specify these two.

Step 5: GDX output file name

The last step is to specify the name of the GDX file you want to create. Just type a name or press the [image: image29.bmp] and select a filename. It is possible to compress the GDX file (GAMS version 22.5 and higher). Compressing makes GDX much smaller and saves a lot of disk space. The disadvantage is that old GAMS versions will not read it (but you can use the tools in Chapter 16 to convert to an older GDX format). You can also select which GDX version will be used to create the new GDX file. The “Only create GREF” checkbox makes it possible not the create a GDX file hen you press the “Run” button, but only a GREF file (a file with meta information) is created.
If you want to, you can save the created conversion statements into a file (press the “Save” button). This file you can load (press the “Load” button) and execute again (and hence making updates possible). The “Run” button will convert the SQL statement into a GDX file and the “Close” button will close the SQL2GAMS program/window.
The creation of GDX can be done very generic by using “parameters” in the fields of the “SQL2GAMS” tab. In the example above we see that in the SQL query three “parameters” are defined: FaoCountryCodes, FaoItemCodes, FAOSubjectElements Also in the “GDX output filename” a parameter is used: Output When defining a parameter (by adding @ characters around it) you can add a default value after the parameter name and after specifying the equal sign (=), e.g. the parameter Output will have ”E:\LEI\MetaBase\FAO\FaoProCrops.gdx” as a default output file name. In the SQL query above the default values of the parameters are empty and when running the SQL query the empty statements will be removed from the SQL, i.e. running: select * from [FaoBulkdownloads] where source="FaoProCrops"; You can change the values of the parameters by pressing on the “Parameters” button.
In MetaBase it is possible to specify which classifications are used as primary columns. This meta information is used when creating a GREF file (i.e. the long descriptions of the elements from the classification are stored in the GREF file). To specify which classification is used for a primary column, just [image: image111.png]double click on the name in the “Primary columns” check box. A window as shown below will appear. You then can specify if the primary column is a time classification or a normal classification. Then you can select from the combo box the name of the classification (or press the [image: image30.bmp] to get the classification tree, see Chapter 4). You then select how you want to have the elements displayed in the Data Explorer. Press the “Select” button when you want to save the primary column/classification relationship. Press “Abort” if you do not want to save the relationship and press the “Delete” button if you want to delete the relationship.
The names of the data columns in MetaBase (specified in the MetaBase database) can de different than the names of the columns from the SQL statement (in the example above MetaBase names the first column MBterritories). By using an Alias (pressing the “Alias” button), you can specify this different column naming.

The “Data” tab makes it easy to inspect the contents of a database. This can be done on three levels:

Level 1: Tables

The first level is the “Tables” tab sheet where you can select from a list of available tables. After selection the content of the table is shown.
[image: image31.png]
Level 2: Stored procedures

Here you can select from a list of available stored procedures and then add, delete parameters needed for the stored procedure. Press the “Run” button to show the result of the stored procedure.

[image: image32.png]
Level 3: SQL

Just type the SQL statement and press the “Run” button to show the resulting table. When you are happy with the SQL statement and you want to use this SQL statement in the “SQL2GAMS” tab sheet, just press the “Copy” button.
[image: image33.png]
When you save the conversion statements to a file, an ASCII/text file is created. The first two characters of each line specify the conversion option, i.e.:

C=
connection string

S=
SQL query

N=
parameter name

D=
parameter description

P=
primary column

Q=
data column

X=
GDX output file

E=
data column name

I=
set information (MetaBase)
V=
set GAMS GDX version: V7C, V7, V6C, V6, V5

G=
Y/N with Y=compressed GDX
A=
alias for column name

Example file (a file called e:\prijzen\demo.inc):

C=Provider=Microsoft.Jet.OLEDB.4.0;Data Source=$localprices.mdb;Persist Security Info=False

S=select * from prijzen

P=maand

P=jaar

P=soort

P=Afslag

Q=Aanlanding

Q=Opbrengst

Q=PrijsIndex

N=Prijzen

D=Afslagprijzen voor vis in Nederland

G=Y

X=$localprijzen.gdx
I="maand",1,"Months",-1,0

I="jaar",1,"Years",-1,0

I="soort",0,"species",-1,0

I="Afslag",0,"fish",-1,0

E=Data
V=V6C

You can start an automatic conversion by calling the sql2gams2 program and specify the filename as a starting parameter:

sql2gams2.exe e:\prijzen\demo.inc

The $local in the file specifies the folder/directory of the .inc file (in our example e:\prijzen). This makes it possible to move the .inc file to another directory and it still will work without changing the content. It is also possible to add parameters to your code and fill these parameters before you run the program. Parameters make the code more generic and make batch conversions possible. Parameters are entered between at-signs (@) and the first time a parameter is used you have to specify the default value. The next example (the file comext.inc) explains the use of parameters, i.e. the two parameters Year and ID are defined and used several times in the code:
C=Provider=Microsoft.Jet.OLEDB.4.0;Data Source=$localCOMEXT.MDB;Persist Security Info=False

S=SELECT DBACOMEXT_COMEXTPRODUCTS.PRODUCT_CD AS Product, trim(DBACOMEXT_COMEXTREGIONS.Country_CD) AS Reporter,

S=trim(DBACOMEXT_COMEXTREGIONS_1.Country_CD) AS Partner, dbacomext_TRADE.StreamID AS Stream, @Year=2006@ AS [Year],

S=dbacomext_TRADE.v@ID=19@ AS V,

S=dbacomext_TRADE.q@ID@ AS Q, dbacomext_TRADE.s@ID@ AS S, dbacomext_TRADE.sdim@ID@ AS Dim

S=FROM DBACOMEXT_COMEXTREGIONS AS DBACOMEXT_COMEXTREGIONS_1 INNER JOIN (DBACOMEXT_COMEXTREGIONS INNER JOIN

S=(dbacomext_TRADE INNER JOIN DBACOMEXT_COMEXTPRODUCTS ON dbacomext_TRADE.ProductID = DBACOMEXT_COMEXTPRODUCTS.PRODUCTID) ON

S=DBACOMEXT_COMEXTREGIONS.RegionID = dbacomext_TRADE.ReportingRegionID) ON DBACOMEXT_COMEXTREGIONS_1.RegionID =

S=dbacomext_TRADE.PartnerRegionID

S=WHERE (((dbacomext_TRADE.v@ID@) Is Not Null));

P=Product

P=Reporter

P=Partner

P=Stream

P=Year

Q=V

Q=Q

Q=S

Q=Dim

N=COMEXT

D=International trade from and to the EU

G=Y

X=$localcomext@Year@.gdx

I="Product",0,"CN",-1,0

I="Reporter",0,"Country2",-1,0

I="Partner",0,"Country2",-1,0

I="Stream",0,"stream",-1,0

I="Year",1,"Years",3,0

E="Variable",0,"trade",-1,0
When you load the code, the program enables a “Parameters” button. When you click on this button you can inspect and change the parameter values:
[image: image34.png]
[image: image35.png]
When you want an automatic conversion and change the parameter values you could use e.g.:

sql2gams2.exe “e:\comext\comext.inc” “YEAR=2005” “ID=18”

You could also create a parameter file, e.g. demo.par with the contents:
YEAR=2005

ID=18
and then start the automatic conversion:
sql2gams2.exe “e:\comext\comext.inc” /par=demo.par
Connection string examples:
ADO connection for DBASE IV

Provider=Microsoft.ACE.OLEDB.12.0;Data Source=e:\data\;Extended Properties=dBase IV;

or

Provider=Microsoft.JET.OLEDB.4.0;Data Source=e:\data\;Extended Properties=dBase IV;

where e:\data\ is the path to the location of the DBase tables.

ADO connection with Excel (first statement old .xls, second for .xlsx)
Provider=Microsoft.Jet.OLEDB.4.0;Data Source=e:\demodata\correct.xls;Extended Properties = "Excel 8.0; HDR=yes; IMEX=1";Persist Security Info=False

HDR = yes = > takes first row as header.

Provider=Microsoft.ACE.OLEDB.12.0;Data Source= e:\demodata\correct.xlsx;Extended Properties="Excel 12.0 Xml;HDR=YES";

ADO with CSV and txt files

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=e:\data\;Extended Properties="text;HDR=yes; fmt=delimited;";Persist Security Info = False
For more examples see the Internet. Also note that you can create a file called schema.ini in which you can specify table/column properties.
9. Converting ASCII data/files
Many data suppliers present their data in a CSV format and hence it is useful to have a parser that converts ASCII data into a GDX and a GREF file. CSV and other character separated files as well as fixed ASCII files (containing data columns with fixed positions) are easily read in by Excel and Access, so you could use the tool discussed in Chapter 8 to convert SQL to GDX and GREF. This, however, takes some additional steps and sometimes the resulting data isn’t ready to be converted into GDX. For ASCII data, MetaBase has a powerful parser. You can start it by selecting the main menu item “Tools” and then select the menu item “ASCII” or when you right click on a data table in the “Data Viewer” tab you can select the “Show TSV” or “Show CSV” popup menu items.

To load a CSV file, just press the “Load” button. You can always change the delimiter of the file. When the data values in the ASCII file use a different “decimal” and/or “thousand separator” character you can change this by pressing the “Separator” button. The “Edit” button will start the notepad2 editor (a freeware powerful replacement of notepad), and there you could edit the contents of the file.

[image: image36.png]
To convert the file into GDX and generate a GREF file, first select which data columns you want to store in the GDX file (this is done in the “Selected columns” check box). Then specify which of the selected columns are primary columns (“Primary columns” check box). When you have two or more data columns the default name of the data column will be “MBdata”. When you want to change the name and/or the classification that is used for the data column, press the “Data column” button.
[image: image37.png]
Now you have to add meta information to the data, i.e. which classifications are used within the data. Go to the “Classifications” box, where you will see that by default, MetaBase looks if there exists a classification with the same name as the primary column. If not, or if this is incorrect, you can double click on the classification in the “Classifications” box and a window as shown below will appear. Also you could select the classification you want to edit and press the “Edit” button. You then can specify if the primary column is a time classification or a normal classification. Then you can select from the combo box the name of the classification (or press the [image: image38.bmp] to get the classification tree, see Chapter 4). You then select how you want to have the elements displayed in the Data Explorer. Press the “Select” button when you want to save the primary column/classification relationship. Press “Abort” if you do not want to save the relationship.

[image: image39.png]
[image: image112.png]The “Clear” button will delete the selected primary column and classification relationship. The “Save DB” button will show the window on the left and makes it possible to add/change the column/classification relationship to the MetaBase database (i.e. create a data source, see Chapter 3). Of course the most used and important button will be the “GDX” button. When this button is pressed the ASCII file is converted into GDX and a GREF file is created. When the “View” checkbox is selected the newly created GDX file is shown in the Data Explorer.
When you press the “Schema” button of the ASCII tool, a window as shown below will appear. You can “Load” or “Save” a schema (below you will see that the data columns all get nice descriptions in the Schema). The most important feature of the Schema is that you can skip the first number of lines (“Skip lines”). Skipping lines is very important, because sometimes data suppliers add additional meta information to the ASCII data file. In the editor you see the current content of the file and in the “Skip lines” edit field you can specify a comma separated list of lines that should be skipped, e.g. “1,2,4,5,6,7” will take line 3 for the column headers, skip the first 7 lines and use the rest of the file as data.
[image: image40.png]
When you press the “Save as CSV” button of the ASCII tool, a window as shown below will appear. Here you can specify for each column if you select the column to be written to the new CSV file. If it is a primary column, if you want to put quotes around the column value and if the values should be written with or without a thousand separator. If you do not like the current column name you can rename it (“Recode Header name”).
[image: image41.png]
All selected columns that aren’t primary are considered to be data and their descriptions are stored in the column name “MBdata”. Of course you can change the name of the column (press the “Data column“ button). The “Insert header” makes it possible to add a column with a fixed value/string. The Figure above resulted in the a new CSV file shown below:
[image: image42.png]
[image: image113.png]When the ASCII data is loaded and shown in the data grid, you can right click on the grid and the following popup menu is shown. Here you see some powerful tools you can apply to your CSV data and make it possible to convert the data into GDX. GDX files can only store numerical values. If your data columns contain non-numerical values you have to recode them into numerical ones. This is done by with the two options “Recode” and “Recode skip values”. The “Normalize” and “Re-Normalize” options are there to convert ASCII files into a new ASCII file with some the data values in one or multiple columns.

Recode:
In the example below we see that the first two columns are the primary columns and that all other columns contain data. Especially column 4 (Sys03-Sample farms) is one that doesn’t contain numerical values. GDX files can only contain values and hence the content of column 4 needs to be recoded into values and a text file will indicate the relationship between a number and the associated text.

[image: image43.png]
Right click on the 4th column and select the “Recode” menu item. A window as shown below will appear and the data of the 4th column is scanned and all different values of the 4th column are displayed in the “Old value” column. In the “New value” column you can specify the value it will be recoded into. You can clear the “New value” column by clicking the “Clear” button. The “Load” will load a text file with “New values” and “Old values”, the “Save” button will save the current Old and New values grid to a text file. The “OK” button will close the window and the “Auto number” will automatically number the “Old values” in the grid.
[image: image44.png]
When you press the “GDX” button to create the GDX file, the values of the grid will be used to recode the text strings into values. The GREF file can indicate that a certain column is the result of a recoding and you can even specify which recoding file can be used to change the values back into text strings when you view the data in the Data Explorer.
The “Recode skip values” menu item will do a recode of a data column but when a cell contains a numerical value the recode is ignored. This can be useful when a column with numeric values and with a word like “missing” can be converted into GDX with e.g. the numeric value 99999 as a missing value.

Normalize:
The example used in this chapter use the first two columns of the data as primary columns, and all other columns are data. You can “normalize” the data, i.e. create a table with 4 columns, first the two primary columns, then a column indicating which variable (column name) and then a column with the values. If you right click on the data grid and select the “Normalize” menu option a windows as shown below will appear. Just select the data columns, then specify the name of the variables column and the name of the values column. Then press the “Normalize” button and the data as show in the next Figure is created.
[image: image45.png]
[image: image46.png]
Re-normalize:
This is exactly the opposite of the “Normalize” action. You have a “normalized” data table and you want to create a table as we had at the beginning of our chapter. Just right click on the variable column (see below the MBdata column) and then select “Re-normalize” and a window as shown below will appear. Just specify the column header names (“column name”) and then select which column contains the values (here the Value column). After pressing the “Re-normalize” button we will get the same data as at the beginning of the chapter.
[image: image47.png]
[image: image48.png]
10. Aggregate or recode data (under development)
When you are on the “Data Viewer” tab and you double click on a tree node that contains data, the Data Explorer will be started and the content of the table is shown. MetaBase knows which classifications are used within the data, it also knows which concordances are defined and hence MetaBase offers you the possibility to take the data and convert it into a new data table with other classifications. Right click on the tree node/table and select from the popup menu the “Aggregate/recode” item. For the table “Reorganised IPTS datasets - EAA_DAT_RAW (EAA_DAT_RAW)” the following window will appear.
[image: image49.png]
In the tree on the left hand side you will see all the classifications that are used in the data table (i.e. the bold black root elements of the tree). As children of these classifications you will see
· the classifications for which a concordance exists (blue color),

· available subsets of the classification (green color) and
· you will see the option “Total”, i.e. meaning that all the values of this classification are aggregated into a total.
When you click on one of the classifications, the content of the classification (elements) are shown in the tree on the right hand side of the window. Just check the classifications and/or conversions you want your new data to have and then press the “Prepare” button. When you press the “Prepare” button, MetaBase will create some GAMS code and show you an action menu (see next picture). In the example above we will convert the “geo” classification into a “HarDFACTS Countries” coding. By default, the GAMS code, the GREF file and the GDX file are written in the same directory as the original data file with a preceding “A_” (i.e. the aggregates in this example are stored in A_EAA_DAT_RAW.GDX). You can change the name and location of the output files by pressing the “Filename” button and select the name and location of the output GDX file. The “Close” button will close the current window and return to the main window.
After pressing the “Prepare” button you can select your next step (see screen below):
[image: image50.png]
The “Run” button will take the created GAMS code, run GAMS to create a new GDX file (with the aggregates/recode) and create a new GREF file. When you press the “View GDX" button, the Data Explorer will show the aggregated/recode GDX file. You can also press the “View GAMS” button and start Gtree to see the GAMS code that generated the GDX file (also in Gtree you can run the code and create a new GDX file). It is easy to change the GAMS code in Gtree and run GAMS to create a new GDX file. The “GAMS lst” button will show the GAMS listing file (and hence you can see if the GAMS code has some errors). The “Close/clean” will close the window and delete the GAMS file and GAMS listing file (the GREF file and GDX file are always kept). The “Close/keep” button will close the window and keep all files.

When you want to do extensive aggregations/recoding for several parameters and also want to compare their outcomes it can be useful the write your own GAMS program and use the data, classifications, and concordances of MetaBase. When you have your GAMS code, it is easy to rerun the program when you have new data (e.g. model scenario outcomes). In Chapter 20 many GAMS examples show how GAMS can be combined with MetaBase to perform complex calculations, recoding, concordances etc. When trying to write your own code, start with simple examples, e.g. when doing concordances do not try to do too many concordances at once. It should work, however, it is very slow and you have to wait a long time before GAMS has calculated the outcome…
11. Looking for data alternatives and HarDFACTS (under development)
In 2007 LEI and vTI (von Thünen Institute in Braunschweig, Germany) worked on an IPTS study called HarDFACTS. The purpose of this feasibility study was to identify the potentials that a harmonized database for agricultural market modelling can bring to both data suppliers and researchers. Data suppliers will be able to identify differences with data of other suppliers and hence discover data errors and discrepancies. Researchers will get a complete and harmonised database, with annexed metadata that will be useful for research and is an input for models used to support policy decisions. Hence data suppliers as well as researchers may greatly benefit from a Harmonised Database for Agricultural Commodity Time Series (HarDFACTS) system (see “Potentials of a harmonised database for agricultural market modelling”, paper presented at the WMOC 2007).
When you click on a data table in the “Data Viewer” tab, MetaBase will check if there are more tables in the system that can be used for harmonisation (linked):

1. all primary keys use the same classifications or a classification that can be linked (concordances) to the primary keys

2. the dimension/unit of the two tables can be converted into each other

3. when one table has more primary keys than the selected table the values of the primary keys not matching with the other table should be fixed or aggregated (MetaBase uses the terminology: adding a filter).

The found tables are presented on the right hand side in the “Data alternatives/HarDFACTS tables that can be linked” box. There are two groups of tables. The first group (Alternatives) contains tables with the same amount of classifications/indices that can be converted into the selected table classifications. The second group (Aggregate to) contains tables with more classifications/indices than the selected table, but after aggregation and conversion the two tables contain the same information.
[image: image51.png]
When you now press the “HardFACTS” menu item a window as show below will appear:
[image: image52.png]
The HarDFACTS menu consists of 4 tab sheets. In the first tab sheet “Select” it is possible to select the tables that should be used for harmonisation and also select/specify the table where the results of the HarDFACTS procedures is stored (output for HarDFACTS).

Because all the knowledge of a harmonisation should be stored to the database, and hence can be used later on again when data updates of the data supplier arrive, the selection of tables is stored under a HarDFACTS procedure name. In the current example two tables are selected as the input and one for output, the whole selection is stored under the name “Demo harmonisation Nace DA-DN (demo)”.

After selecting or creating the correct HarDFACTS procedure you can press the second tab sheet and a window like below is shown. Note that in this example the data from EUROSTAT and FAOSTAT use their own commodity, balance item, and country classifications. Because the HarDFACTS classifications are defined and the EUROSTAT and FAOSTAT classifications are linked to the HarDFACTS classifications it has become possible to harmonise the two data tables of the two data suppliers.

[image: image53.png]
In the upper left part of the window you see the tables that are selected for harmonisation. In HarDFACTS Report 2 it was discussed that the priority of the data should determine the preference of using data (when available). By clicking on a table in the grid and then press the Mode up and Move down buttons you can change the priority order (the one on top has the highest priority). The dimension/unit that is used for the new harmonised data is shown in a combo box Unit. When the data tables use different dimensions/units you can decide which one you would like to use for the output data. For example, EUROSTAT data can be in Euros and FAOSTAT data is in dollars. It is up to you now to decide which currency has to be used in the harmonised data. In the lower left part of the window you see the classifications that will be used for the harmonised data. In this example three classifications are used that are not part of any of the two data tables. The upper right of the windows will tell you if a filter is applied to a data table, i.e. when you click on a table in the grid it will show if a filter is defined. By adding a filter to the primary key/classification it is still possible to harmonise the data
The lower right part of the window above shows the three steps and the additional buttons that are needed to harmonise the data:
Step 1
Since the data suppliers use different classifications the element names (ID’s) used in the data are not unique, i.e. two different classifications could use the same element ID’s. For harmonisation unique ID’s are needed. Step 1 will take the original CSV files of the data suppliers and create a new CSV file that contains unique ID’s (this is simple since all element names are stored in the database under a unique number).
Step 2

The CSV files with unique ID’s are converted into GDX/GREF files.
Step 3

Create GAMS code that will carry out the data harmonization.

Button Gtree
You can first view the code and then execute the procedure (see below).

Button GAMS
You can directly run the code without viewing.

Button View
The GAMS code will create two new data tables. The first one will only contain the newly harmonised data (and can be used in the following two tab sheets: complete and consistency). The second data table contains the data of the data suppliers as well as the harmonised data. Taking this data table and running checks on it makes it possible to give feedback to data suppliers on differences in data. You can view the content of the first table by pressing the “View” button, the “View+” button will show the second table in the Data Explorer.
[image: image54.png]
Currently it is not possible to create new HarDFACTS routines by pressing the “New” button in the “Select” tab. In the tab sheet “Complete” it should be possible to run different scientific procedures on the harmonised data to estimate missing values, to check for typing errors and outliers. At the moment the choice has been made to use TRAMO/SEATS (see Report 2 Section 4.3). For the consistency the Bayesian Highest Posterior Density (HPD) estimator (See HarDFACTS Report 2 Section 5.2) is proposed to be implemented. In the near future when projects are found that need the HarDFACTS functionality, the functionality of these tab sheets will be fully implemented.
Although the HarDFACTS procedures as described in HarDFACTS Report 2 have not yet been fully implemented; the HarDFACTS pilot shows the potentials of such a system. Due to the enormous amount of work to collect classifications, concordances and bulk data and also to implement the wishes into a working HarDFACTS system it is of great importance that a consortium is established that will work together on an improved and extended HarDFACTS system.
In the next Chapter we will discuss the possibilities to add meta-information to any item in the “Data Viewer” tree. Adding knowledge to a HarDFACTS procedure is also possible (as shown below). The functionality of the windows are the same as in Chapter 12 and can be started by right clicking a table in the “Data Viewer” tab and then select the “Add/Edit HarDFACTS” menu item.
[image: image55.png]
[image: image56.png]
12. Add/edit knowledge (Meta-information) to Data Viewer tree
Meta-information is a very important part of MetaBase. The database contains many tables that make it possible to add meta-information to almost everything. Whenever you want to add or change meta-information you do not want to do that in the database (much too complex). For the “Data Viewer” tree items a special window is created (see technical manual for adding knowledge to the MetaBase database). To invoke this window right click on the tree node and select “Add/Edit knowledge”:
[image: image57.png]
Note that meta-information/knowledge is stored by categories. In the example above the category is “Web address”. You then specify the Variant type of the category (here we state that a “Web-address” is “Text”) and then specify the content of the “Web address”. When you have changed the content you press the “Save” button to store the meta-information. The “New” button will create a new category and the “Delete” button will remove the currently selected category from the database. The “Add file” button will not add the content of the file to the meta-information box, but will create a hyperlink reference to the file, e.g. clicking on “Add file” and selecting the Data Explorer documentation will create the reference: file://DataExplorer.doc There is a special meta-information type: the Contact type. To add/edit contacts you will use the second tab sheet “Contacts” in the ”Edit/add knowledge” window.

[image: image58.png]
You first start to select or create a new contact. Select from the combo box one of the selected contacts or press the “Add” button to add a new contact. The “Delete” button will delete the currently selected contact (and all its meta-information) from the database. When you press the “Add” button you can select a new contact from the list shown on the right hand side of the window:

[image: image59.png]
The Second step is to add/edit/delete contact information. You select the “Contacts info:”, then its “Contact type”. When you changed/created the content, press the “Save” button to save the contents to the database. The “New” button will create a new “Contact type”.
In the “Variants” tab sheet you can specify which variant types are available to be used for meta-information (see the previous screens). MetaBase is programmed that it will do different presentations depending on the variant content. Most variant types only contain a description and the “List type”: Do nothing. It is possible to create a variant type that consists of a fixed list of elements you can choose from (a radio button list, a checkbox list) .
[image: image60.png]
13. Print meta information

Meta information is information that is useful for the researcher and can be any text, MS-word document, PDF file, or link to a web page. After clicking on a tree node the accompanied meta information is shown and by right clicking (clicking with the right mouse button) on the node the popup menu is shown and when you select the “Print knowledge” menu item the following window is shown.
[image: image61.png]
In this window you can preview the available knowledge (zooming in and out etc.), change some printer settings and when satisfied you can send the document to the printer.
14. Find data by text in the tree
Although trees are a structured way of presenting information, finding the correct text in a tree can be difficult. Hence, you need a good search option for your tree. Whenever you click the Find option (available for every tree by right clicking on the tree) a window as shown below will appear and here you can specify the search text. You can enter a word, a phrase or a comma separated list of words. When you enter a word or a phrase, MetaBase will try to find an exact match (case insensitive). When you enter a comma separated list of words, MetaBase will look for the words on any place in the text, e.g. searching for “nuts 3” or “nuts, 3” will give different results, i.e. the second one will find tree nodes with text like “Nuts level 3”, the first search option will not.
[image: image62.png]
After typing the search text and pressing “OK” the results are shown in a grid (see below). When there is only one tree node that satisfies the search, MetaBase will jump to the tree node immediately and not show the search results window. Just click on the search results and at the bottom of the window you will see the complete tree of the selected node. Just press “Goto” if you want to jump to the selected node in the tree, the “Close” button will close the search window without jumping to the selected node.
[image: image63.png]
By pressing the “Add filter” you can add a filter to the current results of the search query. For instance searching for “nuts” and then adding a filter “3” will show all nodes that contain the words “nuts” and “3” (AND search). Note that the “nuts, 3” search string will show nodes with “nuts”, and/or nodes with “3” (XOR search).
When you have performed a search and jumped to a table in the “Data Viewer” tab, you can right click on the tree and select “Find again”. This menu item will open the last search query and you can select another table you want to inspect.
15. Find data by Classification or Elements
The tree in the “Data Viewer” tab shows all data tables that are available in MetaBase. The “search” facility described in Chapter 14 makes it possible to search for words in the tree. This is helpful, but when you are not a data specialist, you still will not find the data you need. For instance, you are interested in data on “oil seeds”. Searching for “oil seeds” will return no table in MetaBase, and hence you could think that there is no “oil seeds” data. This is not true, there is a lot of data on “oil seeds”, but this text isn’t in the title of the table. What you need is a search facility that looks in the contents of the tables and see if in the contents of the table the text “oil seeds” is used. This advanced search facility is available in MetaBase, right click on the tree and select “Find in Classification/Elements”. The window below will appear and you can specify your search string.

When you specify “country” as the search string, you check the “Search in Classification description”, and press the “Search” button, the following steps are taken:
1. MetaBase will see which classifications have the word “country” in their name/description

2. MetaBase will look which data tables use one of these classifications

3. The results are displayed in the “Tables from Classification” tab and the found classifications are displayed in the “Classifications” tab.

Whenever you click on a table the complete tree is shown on the bottom of the window. Double clicking the table will jump to the table/node in the “Data Viewer” tree. Double clicking on a classification will open the Classification tab with the correct classification.
[image: image64.png]
[image: image65.png]
When you type “oil seeds”, check the “Search in Element description”, and press “Search”, MetaBase will look which elements contain the search string, then see which Classifications use these elements and finally MetaBase will look which tables use one of these classifications. This looks nice, but often only a part of a classification is used in a data table. Searching this way will give a lot of tables with no “oil seeds” data in it. When you check the “Check Gref file”, you will get what you want, i.e. only elements that are used in the data table are stored in a GREF file, and hence when using the GREF file you will get all the tables that really contain “oil seeds” data.
[image: image66.png]
When you have performed a search and jumped to a table in the “Data Viewer” tab, you can right click on the tree and select “Find in Classification/Elements again”. This menu item will open the last search query and you can select another table/classification you want to inspect.
16. GDX and CSV tools

16.1 GDX Browser

The GDXbrowser is a Windows Explorer like tool that will allow you to browse folders and see which GDX files are available. When clicking on a GDX file the content (parameters, sets, variables) is shown and when clicking on a parameter/set/variable the content of the selection is shown (see window below).

[image: image67.png]
16.2 GDX info
The GDXinfo tool (see below) was created to load a GDX file and display some basic information about that file, i.e. the GDX version it was created with and the content of the GDX file (sets, parameters, equations, and variables). After you have selected a GDX file the information is shown and in the “Inspect parameter/variable” combo box you can select a parameter or variable and its contents is shown in the bottom grid. Since there are different GDX versions and GDX files that are created with newer GDX versions cannot being used in older GAMS versions, converting GDX files is important. GAMS offers a GDXcopy tool for the conversion, but that tool is batch driven and directory oriented. In GDXinfo you can easily select a GDX file and convert it into another GDX version. Most functionality of GDXinfo is now also available in GDXmerge2 and GDXBrowser and hence makes this tools obsolete.
[image: image68.png]
16.3 GDX merge

The GDXmerge2 tool started as a replacement of the GDXmerge tool of GAMS and was created especially for the web version of GSE. The GAMS GDXmerge doesn’t really merge two GDX files, but when a parameter is defined in both GDX files, the parameter will get an additional set (with as elements the 2 file names). A real merging, according to us, would mean that you take the values of the first GDX file and add the values of the second GDX files, this means adding new values and overwriting some values of the first file. The first tab sheet “Merging data” of the GDXmerge2 tools makes this possible. Select your GDX files and specify the new output file (you can press the view buttons on the right hand side and start the Data Explorer with a file to inspect the contents of the GDX file). Then specify which options you want: “Delete GDX file 1”, “Delete GDX file 2”, merge the two files into the “Output file” and then delete the old GDX file 1 and rename the “Output file” to “GDX file 1” (i.e. checking “Move output to GDX 1”), compressing the GDX “Output file”, and you can also perform the same merging as with GDXmerge of GAMS. When the “Append without checking” option is checked the data isn’t checked when written to a GDX file (i.e. GDX errors are ignored). The “GDX info” button will start the GDXinfo tool (see above) and the “Merge button will perform the merging of the files. Whenever you select a GDX file the version of the GDX is shown between the “GDX info” and the “Help” buttons.
[image: image69.png]
The second tab “Advanced merging” will show the contents of the two specified GDX files (from the “Merging data” tab sheet). You now can select which of the parameters of which GDX file should be written to the new GDX file. Hence it is possible to select only a few parameters. Some people do not specify a “GDX file 2”, but only a “GDX file 1”, then go to the “Advanced merging” and select some of the parameters they want in a new GDX file.
[image: image70.png]
The third tab “Convert” makes it possible to select a GDX file and convert it into another GDX version (as in the GDXinfo tool).
[image: image71.png]
In the “GDXdiff” tab, you can specify two GDX files and start the GDXdiff tool from GAMS and write the results to the “Difference file”. GDXdiff will create a GDX file where one can inspect the differences between two GDX files (see the GAMS documentation).
[image: image72.png]
In the “ASCII” tab you can convert any character separated file into a GDX file. This tab was added for ASCII files that contain more than 256 columns (i.e. a limit to Access 2003 and Excel 2003). Just select the delimiter, then the file containing the ASCII data and GDXmerge2 will scan the file and display the first line of the file (i.e. the column names). In the “Use for GDX” check box you can check which of the columns you want to add to the new GDX file. In the “Primary columns” check box you specify which of the columns contain primary keys (classifications). Specify the GAMS name of the new parameter and enter its description and finally specify the GDX output file. When you want you can ignore zeros in your file by checking the “Skip zero values” check box. When ready press the “GDX” button and the new GDX file is created. Note that the ASCII tool in MetaBase has much more functionality (see Chapter 9).
[image: image73.png]
You can start the GDXmerge2 program with command line parameters to merge files:

 GDXmerge2.exe par1 par2 par3 [/options]

par1

GDX file 1

par2

GDX file 2 (if not available use @)

par3

output file (optional default merged.gdx)

/run

do not show window but run the program with the command line parameters

/delete1

delete GDX file 1 after merging

/nodelete1

do not delete GDX file 1 after merging

/delete2

delete GDX file 2 after merging

/nodelete2

do not delete GDX file 1 after merging

/asgams

perform a GDX merging as pdone by the GAMS GDXmerge tool

/move

move the output to GDX file 1

/nocheck

if there is a GDX error ignore it

/V7

save as version V7 GDX

/V6

save as version V6 GDX

/V5

save as version V5 GDX

/compress

create a compressed GDX file

/nocompress

create an uncompressed GDX file

/V7U /V7C /V6U /V6C /V5U

16.4 xxx2GDX: Excel and ODBC to GDX

The ODBC/Excel/Access to GDX tool (i.e. xxx2GDX.exe) makes it possible to connect to an Excel spreadsheet, any ODBC connection, or to an Access database and convert it into a GDX file. Most functionality of this tool (and more) is also available in the SQL2GAMS tool (as described in Chapter 8). In the first combo box you can select an ODBC data source. The second combo box will select an Excel spreadsheet and the third combo box will select an Access database. After selecting one of the three potential data sources, the program will see which data is available and show you a list of all available tables (in case of Excel all available sheets). Clicking on one of the tables will show you the contents in the bottom of the first tab sheet. Just check which tables you want to convert into a parameter and then write to a GDX file (step 1, hence the tab is called “1. Database”). Note that the Excel sheet is connected via an OLEDB data connection and hence will read Excel sheets much faster than the traditional GAMS tools for reading spreadsheets. This tool will read a complete Excel sheet and not a range as specified in the traditional GDX tools.
[image: image74.png]
Step 2. Tables

After selecting the tables to be written to a GDX file, you have to specify for each table the GAMS parameter name and description. Then you have to indicate which columns you want to use for creating the parameter, and finally you have to specify which columns are data (and hence the selected non-data columns are primary columns).
[image: image75.png]
Step 3. Convert
The last step is to specify the new GDX file and then press the “Save GDX” button to create a new GDX file with the selected data. When you press the “View” button, the Data Explorer is started and the content of the GDX file is shown. The “Close” button will close the application.
[image: image76.png]
16.5 CSV to GDX, GDX to CSV, CSV to CSV, GDX to GDX tools

The program CSV_GDX_tools.exe let you convert CSV and GDX files to CSV and GDX files. The first tab sheet ‘CSV -> GDX’ has the look and feel of the SQL2GAMS2 program (see Chapter 8). Instead of working on SQL it works on CSV files. You start clicking on [image: image77.bmp] and selecting an ”ASCII input file”. The first 50 lines of this file are shown in the editor on the right hand side of the window. You can now select the CSV delimiter (in our case the comma). The CSV file is scanned and from reading the first line we get a list of available columns which are stored in the “Use for GDX” check list. Here you can select which columns you want to use for the creation of a GDX file (in our example we do not want to include the column “flag” in the GDX file). In the “Primary columns” check list, you specify which columns are the primary columns (or GAMS sets) and hence the columns that do not contain the data values. You can use the record number/line number as an extra primary column by checking the “Use Recordnr as Primary”. This is sometimes useful, i.e. to make every line unique and identifiable. You now specify the name of the GAMS parameter you want to create (“Parameter name”) and give a parameter description. Then specify the name of the output file and select the GDX version and GDX compression you want to create. When the “Domain checking” is checked every value that is written to the GDX file is checked and when it contains an error it is reported (Note that the combination of the elements of the primary columns of every line the CSV file need to be unique). You can ignore zero values to be written to the GDX file (since GAMS default value is zero) by checking the “Skip zero values”. When the data values are in more than 1 column (in the example below all the years and quarters columns are data columns) you can specify in the “Data name” and “Data description” edit boxes the name and description of the extra primary column (see also SQL2GAMS).
[image: image78.png]
In the “GDX -> CSV” tab sheet you can take a GDX file, select the GREF file (A file containing meta-information and created by MetaBase, Gtree or many of our other tools. We need this file, because a GDX file doesn’t know the name of the sets that are used in a parameter). Select the parameter you want to save as a CSV file, select the delimiter, select the CSV output file and decide if you want to save the values and/or elements with quotes. If the “Write header” is not checked, only the data values (and not the names of the sets of the parameter) as saved. Use the “Display format” to determine how data is saved in the CSV file (see Chapter 21 for display formats).

[image: image79.png]
Note the very special option “Create Crosstab”. With this option it becomes possible to select one of the primary columns (in our example below the “time” set) and create a CSV file with the years as columns.

[image: image80.png]
Normal CSV output:

landuse,geo,time,Value

l0000,eu27,2007a00,432492.2

l0000,eu27,2006a00,432492.9

l0000,eu27,2004a00,432441.4

l0000,eu27,2003a00,432490.9

l0000,eu27,2002a00,432302.5

l0000,eu27,1999a00,432221.9

l0000,eu27,1998a00,432222.8

Crosstab CSV output:

landuse,geo,1998A00,1999A00,2000A00,2001A00,2002A00,2003A00,2004A00,2005A00,2006A00,2007A00,2008A00

l0000,al,2875,2875,2875,2875,2875,2875,2875,2875,2875,2875,2875

l0000,at8,385.8,8385.8,8385.8,8385.8,8385.8,8385.8,8385.8,8385.8,8385.8,8387,8387
In the “CSV -> CSV” tab sheet you can take a CSV file change it’s delimiter, select which columns you want to store in a new CSV file, take a UNIX CSV file (containing only a Line Feed as a line ending) and save it in Windows format (Carriage Return/Line Feed), or take a Unicode file (e.g. all CSV files from FAOstat) and convert it into MS-Dos/Windows ASCII format.
[image: image81.png]
The “GDX -> GDX” tab sheet just contains an easy way to start other GDX tools:

[image: image82.png]
The “Meta-information” tab sheet can be used to read from a CSV file which elements the sets/indices of a parameter have. There are several ways of getting the elements of a set. The simplest way is to load a CSV file (in “ASCII element file”) and just check which columns of the data you want to scan for elements and finally press the “Read” button. The result is shown in the editor, and is ready to use GAMS code.
[image: image83.png]
[image: image84.png]
Sometimes, like in the example above, the data file contains element names as well as element descriptions. Select the columns and then press the “Combine” button. You now will have a window where you can specify the element name and element description columns:

[image: image85.png]
[image: image86.png]
Sometimes you have programs that will create CSV output files and let you choose if you want to save a file with element names, or with element descriptions. When this is possible, you can create both files and use “ASCII element file” to specify the data file with element names, and use “ASCII description file” to specify the data file with element descriptions.
[image: image87.png]
You can start the CSV_GDX_tools.exe with command line parameters:
Starting with /FADN or /RICA will show a “A1_A2_A3 as primary” instead of a “Use Recordnr as primary” checkbox in the “CSV -> GDX” tab sheet. When you check this options, the A1, A2, and A3 variable values will be combined in a unique A1_A2_A3 variable. The FADN data on a farm level is supplied as CSV files and the A1_A2_A3 variable, together with A24 (Country) and Year variable are used to create a GDX file (for information on FADN see http://ec.europa.eu/agriculture/rica/).
Instead of specifying all command line parameters after the program call, you can put the commands in a file (one line = one command) and use the file name as a command line parameter, e.g. we can start the tool with the commands written in the file ‘parameters.txt’ by: csv_gdx_tools.exe @parameters.txt
You can use the /METHOD parameter to indicate that the command line parameters are used for a certain tab sheet, e.g. /method=gdxcsv will indicate that the command line parameters are used for the “GDX -> CSV” tab sheet. Instead of gdxcsv you can use csvgdx and csvcsv but currently gdxcsv and csvgdx are fully working.
 Command line parameters for /method=gdxcsv:
 csv_gdx_tools.exe par1 par2 par3 par4 /method=gdxcsv [/options]

par1

GDX file
par2

GREF file (can be empty)
par3

GDX parameter to convert

par4

CSV output file
/crosstab=fadnvar

specify which data column is used for creating a cross tab,

i.e. don’t use this option to create a normal CSV file
/layout=#.####

Specify the layout of the CSV values
/indexquote=no

Do not check the “Use quotes “ around index (sets)” checkbox
/valuequote=no

Do not check the “Use quotes “ around values” checkbox
/header=yes

Check the ”Use header” checkbox
/checkheader=yes

Check the “Check header” checkbox

/delimiter=", "

Specify the delimiter you use for the CSV file
/checkdate

If the file date of par4 (CSV output file) is newer than the file date

of par1 (GDX file), no action is taken

/SKIPZERO

Check the “Skip zero values” checkbox

/NOSKIPZERO

Un-check the “Skip zero values” checkbox
/OUTPUTTYPE
If you have specified a GREF file you can use the meta information to create the CSV file
/OUTPUTSEP

specify the separator between short name and long name

/CROSSTYPE
If you have specified a GREF file you can use the meta information to create the cross tab header of the CSV file (see /crosstab=)

/CROSSSEP
specify the separator between short name and long name of the cross tab header

Using command line parameters make batch conversion possible, e.g. the following line:

csv_gdx_tools.exe "e:\seamless\result_ell.gdx" seamlessdata.gref regiontypologycount3avg count3avg_ell.csv /crosstab=fadnvar /layout=#.#### /indexquote=no /valuequote=no /header=yes /delimiter="," /method=gdxcsv
Command line parameters for /method=csvgdx:

 csv_gdx_tools.exe par1 separator “list1” “list2” /method=csvgdx [/options]
par1

Specify the CSV file to be converted

separator
Specify the separator in the CSV file

(allowed COMMA TAB SEMICOLON SPACE or any character as a separator)

“list1”

A comma separated list of all the columns of the CSV file you want to use to create
a GDX, i.e. use “ALL” when all columns should be used.

“list2”

A comma separated list of all the columns of the CSV file that are an index/set in the

parameter of the GDX file.

/PARNAME=
Specify the parameter name of the data in the GDX file

/PARDESCR=
Specify the parameter description of the data in the GDX file

/DOMAIN
Check the “Domain checking” checkbox

/NODOMAIN
Un-check the “Domain checking” checkbox

/COMPRESS
Check the “Compress GDX” checkbox

/NOCOMPRESS
Un-check the “Compress GDX” checkbox

/SKIPZERO
Check the “Skip zero values” checkbox

/NOSKIPZERO
Un-check the “Skip zero values” checkbox

/GDX=

Specify the GDX output file (when no path is specified the path of the par1 file is taken)

/V7 /V6 /V5
Create a version V7/V6/V5 of the GDX file
/V7C /V6C
Create V7/V6 compressed GDX file
/DATANAME=
When you have two or more columns that contain a data value, the columns become the

elements of a new set/index with the name DATANAME.

/DATADESCR=
Description of the DATANAME set/index.
/checkdate
If the file date of the GDX output file is newer than the file date of par1 (CSV file),

no action is taken

Using command line parameters make batch conversion possible, e.g. the following line:

csv_gdx_tools.exe “e:\gamstools\gamsdemo\x.csv” comma "all" "i,j" /SKIPZERO /GDX=xnew.gdx /PARNAME=Xnew /PARDESCR="External outcome of X" /DATANAME=GAMS /DATADESCR="GAMS variable" /method=csvgdx

17. Eurostat
Eurostat publishes about 4,500 tables on the internet and with the Internet Browser you can go to their website and browse the available data. When you want all data, you can subscribe and get a username and password to bulk download the tables. All the tables of Eurostat are in a so called TSV-format. This is special tab separated file and needs additional work before it becomes usable. Every month a lot of the tables are updated and for MetaBase we have developed a procedure to download the data and put it into MetaBase.

To download the data needed for MetaBase follow the following four step approach:

1. Open web-site http://europa.eu/estatref/download/everybody/ and login with your username and password.
2. Download table_of_content.html (save the file in the directory metabase\downloads\www.europa.eu\estatref\download\everybody). This file contains the whole tree structure of the data and also the date when a table was updated.

3. Download dic/all_dic.zip (in MetaBase\Downloads\Dictionaries and unzip it in this folder). The dictionaries are the Eurostat classifications used in their tables.

4. Start Superbot (a program that will download all files from a website) and download the directory data/ (in metabase\downloads\www.europa.eu\estatref\download\everybody\data). This directory contains all the TSV files in a Gzip compressed format.
[image: image88.png]
Below two screen examples of Superbot (see http://www.sparkleware.com/superbot/index.html). In our case Superbot has a filter that will only download .tsv.gz files.
[image: image89.png]
[image: image90.png]
The first step in MetaBase is to check the Eurostat dictionaries, i.e. if there are new dictionaries and if there are new elements in the already defined Eurostat classifications/dictionaries. Press the menu item “Eurostat” and then select “1. Check Eurostat Dictionaries” and after checking the “Dictionary directory” you can press the “Check” button and MetaBase will check the dictionaries and update the database.
[image: image91.png]
After the dictionaries you press the menu item “Eurostat” and select “2. Check for new Eurostat data”. A window as shown below is presented and you start with pointing to the HTML file we downloaded in step 2 from above. Then you press the “Build Tree” button. MetaBase will start Excel, load the HTML file in Excel and then start parsing it (i.e. generating the tree of Eurostat data). The resulting tree is presented in the “Tree” tab. Note that the “Last Update” date is used in the next step. When you press the “Check” button the tree of the HTML file is compared to the Eurostat tree in MetaBase and all changes are written to the database. For all the tables in the tree, MetaBase looks if the update date (found in the HTML file) of the table is after the data as specified in the “Last Update” field (hence the “Last Update” date is nothing else then the last time you did an Eurostat updating, please do not forget that after the updating process to set the “Last Update” to today).
[image: image92.png]
[image: image93.png]
Press “Eurostat” and then “3. Check files for batch updating”. Now all tables in MetaBase are checked and if the CSV or TSV file is of newer date than the GDX file, the file is added to the list of files that can be updated by a batch procedure (see window below). Just press the “Convert” button and MetaBase will start to convert and create the new GDX files for MetaBase (see second window below). Note that when error occur during the conversion process these warnings/errors are written to a file (see menu item “Tools” and “View failed conversion file” and “View warning file”).
[image: image94.png]
[image: image95.png]
The last step for the updating process is “Eurostat” and “4. Make parameter tree”, i.e. this is the file that is used for the MetaView program (a minimized version of MetaBase and especially useful for people who only want to view data and classifications).
18. Literature
Dol, W., F. Bouma and B. van der Hout (2005), Manual GSE. The Hague, Agricultural Economics Research Institute (LEI), the Netherlands. http://www3.lei.wur.nl/gamstools/gse.doc

Dol, W. (2005), Manual MetaWave. The Hague, Agricultural Economics Research Institute (LEI), the Netherlands. http:// www3.lei.wur.nl/gamstools/metawave.doc
Dol, W. (2009a), Manual Gtree. The Hague, Agricultural Economics Research Institute (LEI), the Netherlands. http:// www3.lei.wur.nl/gamstools/gtree.doc

Dol, W. (2009b), Manual Data Explorer. The Hague, Agricultural Economics Research Institute (LEI), the Netherlands. http:// www3.lei.wur.nl/gamstools/DataExplorer.doc
Dol, W. (2009c), MetaBase Installation Manual. The Hague, Agricultural Economics Research Institute (LEI), the Netherlands.
Dol, W. (2009d), Database Management Tool for MetaBase. The Hague, Agricultural Economics Research Institute (LEI), the Netherlands.
Dol, W. F. Godeschalk, D. Oudendag, D. Verhoog (2008), MetaBase Technical Manual. The Hague, Agricultural Economics Research Institute (LEI), the Netherlands.
IPTS 2007a, Project report 1: Review on existing harmonised databases, EC JRC-IPTS Sevilla, Spain.
IPTS 2007b, Project report 2: Proposal for a structural design of the Harmonised Database For Agricultural Commodity Time Series (HarDFACTS), EC JRC-IPTS Sevilla, Spain.
IPTS 2007c, Project report 3: Technical aspects of the Harmonised Database For Agricultural Commodity Time Series (HarDFACTS) system, EC JRC-IPTS Sevilla, Spain.
Verhoog, D., W. Dol, F. Godeschalk, M. Heiden and P. Salamon (2007), WMOC-paper: Potentials of a harmonised database for agricultural market modelling, 16th World Market Outlook Conference EC JRC-IPTS Sevilla, Spain.
19. Abbreviations

· GAMS
General Algebraic Modeling System, see www.gams.com
· GSE
GAMS Simulation Environment, see www3.lei.wur.nl/gse
· Gtree
GSE GAMS editor, part of GSE

· LEI
Agricultural Economic Research Institute, part of WUR

· WUR
Wageningen University and Researchcentre
File extensions and their associated software:

.pdf

start PDF browser (a good one is Foxit: www.foxitsoftware.com)
.doc, .docx
start MS-Word

.xls, .xlsx
start MS-Excel

.gms

start Gtree
.inc, .sql
start SQL2GAMS2
20. GAMS and MetaBase
20.1 Introduction

In Chapter 10 we explained how MetaBase can be used to aggregate or recode data. You just select the parameter you want and a simple user interface makes it possible to aggregate a classification, or to change from one classification into another (by using a concordance table). However, what if you want to do more than a simple aggregation, e.g. a conditional aggregation, or what if you want to combine two or more parameters? Yes indeed! MetaBase should grow into a system that makes all data manipulation easy, however, we didn’t had the time and money to fully implement all possibilities. To make things possible, and not having you to wait until we have implemented something, you can use GAMS. Many model builders use GAMS as their modeling language. Since GAMS isn’t only useful for optimization but can also be used for data calculations/manipulations we decided not to write our own software, but to use GAMS whenever possible. In MetaBase you can generate GAMS code from all your data, just be clicking on the menu item “Tools” and then press “Create GAMS code in MetaBaseGAMS”. It will take some time, but when ready you have created easily accessible GAMS code, i.e. you do not need to be a specialist to create GAMS code with the code created by MetaBase. Suppose MetaBase is stored on a network drive I:\ and when you have pressed the “Create GAMS code in MetaBaseGAMS” you will see a lot of GAMS files already being created in the directory I:\MetaBaseGAMS Don’t worry about them too much, just start Gtree and have a look at I:\MetaBaseGAMS\Calculations\demo.gms Note that you only have to create new GAMS code when you have added new data to MetaBase, or changed the content of classifications.
[image: image96.png]
This demo file can be seen as the template for you to create GAMS code and using MetaBase data. Note that the initialization file is needed and please check that the $setglobal MetaBase is pointing to the drive/directory where you have stored MetaBase (I:\ in our case). The contents of the initialization.gms just consists of a bunch of macros that make it easy for you to get data, classifications, and concordances. Also this file contains four lists you can use to see which parameters (ListOfParameters.gms), which classifications (ListOfSets.gms), which concordances (ListOfConcordances.gms) and which classification trees (ListOfTreeClassifications.gms) are available.
[image: image97.png]
Just browse through the files and you will get an idea of what is possible, e.g. in the list of parameters we see the line: comext2006 (cn,country2,country21,stream,YEARS_1,trade) "COMEXT 2006"
Suppose we want to use this parameter (note that by default MetaBase will show a tree of all available data in the “Data Viewer” tab and at the end of each tree node the file name and the parameter name is shown between braces, hence making it easy for you to know which parameter you want). The only thing we have to do is adding one line of code to the demo.gms file (under the STEP 1 section):

%GetParameter% comext2006
Just enter this line and run GAMS (Pressing F9 or [image: image98.bmp] in Gtree) and have a look at the GAMS list file:

---- 24823 Loaded set: CN -> CN

---- 25207 Loaded set: Country2 -> Country (classification tables from SITA/DBACOMEXT database LEI)

---- 25220 Loaded Alias: country21 for country2

---- 25237 Loaded set: stream -> Import/Export

---- 25315 Loaded set: Years_1 -> Years (Years (FAOstat))

---- 25334 Loaded set: trade -> Trade variables

---- 25341 Loaded parameter: comext2006(cn,country2,country21,stream,YEARS_1,trade) -> COMEXT 2006

[image: image99.png]
Instead of %GetParameter% comext2006 we prefer the line:
%GetParameter% comext2006 (cn,country2,country21,stream,YEARS_1,trade) "COMEXT 2006"
because then you immediately see which sets are used in the parameter and hence make it easier for you to write GAMS code that uses the data and sets.
Note that every time you get a parameter (%GetParameter%) you will not only define the parameter, but also all the sets and their subsets this parameter uses. The GetParameter macro will also automatically load the data from the GDX file into GAMS. Making GAMS code that takes the parameters you need is easy: look at the MetaBase tree and write down the parameter name. Look at the ListOfParameters.gms file and copy the line that contains the parameter you want. When you have your parameters it is easy to define new parameters in GAMS yourself and do all kinds of (conditional) calculations.
In the example below (see window below) we have loaded the parameter comext2006, then in step 2 we load some additional sets (i.e. YEARS, Geo and HarDFACTS_countries), in step 3 we load all available concordances of all the sets we have loaded by just issuing the command %GetLinks% and in step 4 we decided to load one additional concordance geoTOFARO_LEI. The code is extremely simple and the macros make sure that all sets and their subsets are loaded (just have a look at the GAMS list file):
---- 24826 Loaded set: CN -> CN

---- 25210 Loaded set: Country2 -> Country (classification tables from SITA/DBACOMEXT database LEI)

---- 25223 Loaded Alias: country21 for country2

---- 25240 Loaded set: stream -> Import/Export

---- 25318 Loaded set: Years_1 -> Years (Years (FAOstat))

---- 25337 Loaded set: trade -> Trade variables

---- 25344 Loaded parameter: comext2006(cn,country2,country21,stream,YEARS_1,trade) -> COMEXT 2006

---- 25426 Loaded set: Years -> Years

---- 29427 Loaded set: geo -> geo

---- 29457 Loaded set: eu15 -> EU15

---- 29498 Loaded set: eu25 -> EU25

---- 29541 Loaded set: eu27 -> EU27

---- 29569 Loaded set: neu12 -> NEU12

---- 30088 Loaded set: HarDFACTS_Countries -> HarDFACTS Countries

---- 30152 Loaded: Parameter geoTOHarDFACTS_Countries(geo,HarDFACTS_Countries) -> geo --linked to--> HarDFACTS_Countries

---- 30274 Loaded: Parameter YearsTOYears_1(Years,Years_1) -> Years --linked to--> Years_1

---- 31162 Loaded set: FARO_LEI -> FARO (LEI regional division for FARO project)

---- 32452 Loaded: Parameter geoTOFARO_LEI(geo,FARO_LEI) -> geo --linked to--> FARO_LEI
Note that the sets eu15, eu25, eu27 and neu12 are all subsets of geo and are automatically loaded without you needing to write any code.
[image: image100.png]
If you are a GAMS expert and you want to know the scary details: look at the I:\MetaBaseGAMS directory. Most of the files there are containing the GAMS code for a classification (a set). The four list files ListOfParameters.gms, ListOfSets.gms, ListOfConcordances.gms and ListOfTreeClassifications.gms are just lists that show what is available in GAMS. The file MetaBaseAlias.gms defines ALIAS commands (e.g. in our COMEXT2006 example we needed the Country21 alias for Country2). A classification is more than a set, i.e. a classification contains a tree structure over it’s elements. The file PC_classification.gms specifies the tree relationships within a classification/set. The most important file is MetaBase.gms Here you will find the GAMS code to declare the sets and parameters you want and also the code to load the data from GDX into GAMS. Note that a file that contains a set definition can be used in two ways. The first one is to completely declare the set and all its elements, i.e. in GAMScode: $include country2.gms
The second way is to re-use the elements of the set, e.g. the following code will use all the elements of the country2 set and the two new elements EU29 and EU32 into the new set NewCountries:

Set NewCountries

/

EU29

EU32

$include country2.gms elements

/;
20.2 GAMS Examples

Since data comes from many different data suppliers and they all use different parameter names, different sets etc.; creating generic GAMS code isn’t easy, but once available it becomes extremely easy to do simple and advanced manipulations. Below you will see a selection of things that are possible with GAMS.
The code of all these examples can be found in I:\MetabaseGAMS\Calculations\examples.gms
Aggregate:
Aggregations are extremely simple in GAMS. You just take a summation, e.g. when you want a total over all countries of the Eurostat AIS key indicators you write the following code:
%GetParameter% PAGR_IS (item,element,geo,time) Agricultural Information System - Key indicators";

Parameter Aggregate(item,element,time) "Aggregated Key indicators";

Aggregate(item,element,time)= sum((geo),PAGR_IS(item,element,geo,time));

display Aggregate;
Concordances:
The power of MetaBase is that we can define concordances between classifications and that we can convert data from one classification into another. In the following code we take the FAOstat SUA date and convert the ItemCod classification into a HarDFACTS commodities classification:
%GetParameter% PFAOSTAT_CoreSUAData (FAOSTAT_COUNTRIES,ITEMCOD,SUBJCOD,YEARS_1) "FAOSTAT SUA"

%GetSet% HarDFACTS_Commodities

%GetLinks%

parameter SUAData(FAOSTAT_COUNTRIES,HarDFACTS_Commodities,SubjCod,Years_1) "SUA HarDFACTS";

SUAData(FAOSTAT_COUNTRIES,HarDFACTS_Commodities,SubjCod,Years_1)=

 sum((ItemCod),

 ItemCodTOHarDFACTS_Commodities(ItemCod,HarDFACTS_Commodities)*

 PFAOSTAT_CoreSUAData(FAOSTAT_COUNTRIES,ItemCod,SubjCod,Years_1))

;

display SUAData;

Note: running GAMS to perform concordances can take some time, it is better to do concordances only over small pieces of data.
Element Aliases:
In MetaBase a classification consists of elements which are uniquely identified by the element identifier. Some data suppliers use the same classification but the elements have different identifiers, e.g. in the Time Classification Years we see three different ways to identify the year 1999: Eurostat uses “1999A00”, FAOstat uses “1999” and FAPRI uses “99/00”. MetaBase generates GAMS code that makes it possible to switch between these element aliases, i.e. MetaBase creates sets and concordances for all these combinations. For the classification Years, three sets are created: Years, Years_1 and Years_2, i.e. the first is the Eurostat notation, the second is the FAOstat notation and the last one is FAPRI. Also the concordances YearsToYears_1 and YearsToYears_2 are created. As in the previous example it becomes easy to translate a parameter into a new parameter with the correct identifiers.
%GetParameter% ReorgIptsEAA_DAT_RAW (IPTSITEM,IPTSVAL,UNIT,GEO,Years_1) "EAA_DAT_RAW"

%GetSet% Years

%GetLinks%

Parameter EAAData(IPTSITEM,IPTSVAL,UNIT,GEO,Years) "in Eurostat Years";

EAAData (IPTSITEM,IPTSVAL,UNIT,GEO,Years) =

 sum(Years_1, ReorgIptsEAA_DAT_RAW(IPTSITEM,IPTSVAL,UNIT,GEO,Years_1) *
 YearsToYears_1(Years,Years_1));

display EAAData;
Combining data:
If you want to combine two datasets, you should start to convert the two parameters into parameters which use the same classifications. Then you can create a new parameter containing the two data sets:

%GetParameter% PFAOSTAT_CoreSUAData (FAOSTAT_COUNTRIES,ITEMCOD,SUBJCOD,YEARS_1) "FAOSTAT SUA"

%GetParameter% PAPRO_CPB_CEREA (PROD_BAL,BAL_ITEM,GEO,YEARS) "Cereals balance sheet (crop year)"

%GetSet% HarDFACTS_Countries

%GetSet% HarDFACTS_Commodities

%GetSet% HarDFACTS_Balance_old

%GetLinks%

parameter CoreSUAData(HarDFACTS_Countries,HarDFACTS_Commodities,HarDFACTS_Balance_old,Years_1) "FAOstat: SUA";

CoreSUAData(HarDFACTS_Countries,HarDFACTS_Commodities,HarDFACTS_Balance_old,Years_1)=

 sum((FAOSTAT_Countries,ItemCod,SubjCod),

 FAOSTAT_CountriesTOHarDFACTS_Co(FAOSTAT_Countries,HarDFACTS_Countries)*

 ItemCodTOHarDFACTS_Commodities(ItemCod,HarDFACTS_Commodities)*

 SubjCodTOHarDFACTS_Balance_old(SubjCod,HarDFACTS_Balance_old)*

 PFAOSTAT_CoreSUAData(FAOSTAT_Countries,ItemCod,SubjCod,Years_1));

parameter CEREALS(HarDFACTS_Commodities,HarDFACTS_Balance_old,HarDFACTS_Countries,Years_1) "Eurostat: Cereals";

CEREALS(HarDFACTS_Commodities,HarDFACTS_Balance_old,HarDFACTS_Countries,Years_1)=

 sum((prod_bal,bal_item,geo,Years),

 prod_balTOHarDFACTS_Commodities(prod_bal,HarDFACTS_Commodities)*

 bal_itemTOHarDFACTS_Balance_old(bal_item,HarDFACTS_Balance_old)*

 geoTOHarDFACTS_Countries(geo,HarDFACTS_Countries)*

 YearsToYears_1(Years,Years_1)*

 PAPRO_CPB_CEREA(prod_bal,bal_item,geo,Years))

;

Set DataSupplier "Data supplier"/Eurostat, FAOstat/;
parameter CombinedData(DataSupplier,HarDFACTS_Commodities,HarDFACTS_Balance_old,HarDFACTS_Countries,Years_1);
CombinedData("Eurostat",HarDFACTS_Commodities,HarDFACTS_Balance_old,HarDFACTS_Countries,Years_1)=

 CEREALS(HarDFACTS_Commodities,HarDFACTS_Balance_old,HarDFACTS_Countries,Years_1);
CombinedData("Faostat",HarDFACTS_Commodities,HarDFACTS_Balance_old,HarDFACTS_Countries,Years_1)=

 CoreSUAData(HarDFACTS_Countries,HarDFACTS_Commodities,HarDFACTS_Balance_old,Years_1);

display CombinedData;
Conditional statements:
The previous examples showed that GAMS is good in aggregations, but GAMS has more to offer, i.e. with conditional statements (if statements) you can control your calculations even more. Take the first example and suppose you only want to add up countries that have a “Area (1000 ha)” of “Barley” of more than 500:
%GetParameter% PAGR_IS (item,element,time) Agricultural Information System - Key indicators";

Parameter A_PAGR_IS(item,element,time) "Aggregated: Key indicators";

A_PAGR_IS(item,element,time)= sum((geo),PAGR_IS(item,element,geo,time));

Parameter Conditional(item,element,time) "Conditional: Key indicators";

Conditional(item,element,time)=
 sum((geo)$(PAGR_IS("barl","levl",geo,time)>500),PAGR_IS(item,element,geo,time));

Parameter Difference(item,element,time);

Difference(item,element,time)=A_PAGR_IS(item,element,time)-Conditional(item,element,time);

set VariableName/"Aggregated","Conditional","Difference"/;

parameter Interesting(variablename,time);

Interesting("Aggregated",time)=A_PAGR_IS("barl","levl",time);

Interesting("Conditional",time)=Conditional("barl","levl",time);

Interesting("Difference",time)=Difference("barl","levl",time);
display Interesting;
OPTION statement: Consider the following code:
%GetSet% geo

%GetSet% Years_1
parameter demodata(geo,years_1) "Data example";

demodata("NL","1999")=1999; demodata("NL","2000")=2000; demodata("NL","2001")=2001;

demodata("BE","1999")=1999; demodata("BE","2001")=2001;

demodata("LU","1999")=1999; demodata("LU","2000")=2000;

parameter Count(geo) “number of non-zero values”;

option Count < demodata;

display count

parameter Average(geo) “3-years country average”;

Average(geo)$count(geo)=sum(years_1,demodata(geo,years_1))/count(geo);

display average;
In this example the OPTION statement results in a parameter Count that contains the number of non-zero values of demodata per country, i.e. BE 2, LU 2, NL 3 The OPTION statement is a very powerful statement when you want to do calculations, e.g. calculating a three-years average and correcting the average when there is no value for a certain year. Note that the $count(geo) conditional statement is needed, since we have a division in the right-hand side of the count. For a detailed explanation of the Option command see Bruce McCarls’ manual (i.e. section 13.3.3.2). Defining sets and parameters with the option statement is the fastest and most flexible way, so one should spend some time to write examples and see how the option command works.
Another example of the usage of an OPTION statement is when you have a parameter that is extremely sparse (e.g. FADN data for every country and every farm and every year we collect some data variables (fadnvar)) and we want to speed up calculations, i.e. this is done by creating a multidimensional set and use this set in the calculations. In the next example we do our calculations only over the set Farms(Country,FADNid,Year) and not over all Country,FADNid,Year combinations. This speeds up calculations about 500%.
parameter fadn(Country,FADNid,Year,fadnvar);

SET Farms(Country,FADNid,Year);

option Farms < FADN
parameter Group(Country,FADNid,Year) “Typology groups”;

Group(Country,FADNid,Year)$((fadn(Country,FADNid,Year,'a25') > 0 and

 fadn(Country,FADNid,Year,'a25') <= 2000)

 or (fadn(Country,FADNid,Year,'a25') > 6000 and
 fadn(Country,FADNid,Year,'a25') <= 7000))

 = 1$Farms(Country,FADNid,Year);
Creating new groups:
set Group "Country groups"
/

BeNeLux "Belgium, Netherlands and Luxembourg"

BeLux "Belgium and Luxembourg"

/;

set geoToGroup(geo,Group) "Country Groupings"

/

"NL"."BeNeLux"

"BE"."BeNeLux"

"LU"."BeNeLux"

"BE"."BeLux"

"LU"."BeLux"

/;

* A different way of declaring is:

*geoToGroup("NL","BeNeLux")=1; geoToGroup("BE","BeNeLux")=1;

*geoToGroup("LU","BeNeLux")=1; geoToGroup("BE","BeLux")=1; geoToGroup("LU","BeLux")=1;

parameter GroupTotal(Group,Years_1) "Country group totals";

GroupTotal(Group,Years_1)= sum(geo,demodata(geo,years_1)$geoToGroup(geo,group))

display Grouptotal;

parameter GroupCount(Group);

GroupCount(Group)=sum(geo,1$geoToGroup(geo,group));

display GroupCount;

parameter GroupAverage(Group,Years_1) "Country group averages";

GroupAverage(Group,Years_1)$GroupCount(Group)=GroupTotal(Group,Years_1)/GroupCount(Group);

display GroupAverage;
In this example we define two new country groups (i.e. a new set Group that contains the two new groups as elements). We specify a geo to Group mapping (i.e. the multidimensional set/tuple geoToGroup) and then calculate Group totals and averages.

Aggregating over a Classification tree:

Many data suppliers do not supply a full dataset, but only supply data at certain aggregated levels. For instance the European international trade data “Comext” is only supplied for the 2 and 8 digit levels of the CN classification. When you want the 4 and 6 digit levels, you have to take the appropriate 8 digit codes and add them up. Since we have the classification tree of the CN classification (see PCclassifications.gms), we can write a generic GAMS routine that aggregates the children a tree node when the node has a zero value. In the Initialization.gms file you will find the command TreeAggregate:
*_ command to aggregate children to their parent when the parent has no value:

$setglobal TreeAggeregate $batinclude %MetaBaseGAMS%AggregateTree.gms

*needs 4 additional parameters

*1: Parameter

*2: Pre-domain

*3: Classification, i.e. over this classification the aggregation takes place
*4: Post-domain

You can use this command to aggregate the Comext data:
%GetParameter% comext2006 (CN,COUNTRY2,COUNTRY21,STREAM,YEARS_1,TRADE) "COMEXT 2006"

*only calculate the data for Reporter: The Netherlands and Partner: France for the year 2006
parameter Data(CN,Stream,Trade);

Data(CN,Stream,Trade)=comext2006(CN,"003","001",Stream,"2006",Trade);

%TreeAggeregate% Data (CN ,STREAM,TRADE)

display data;
With the %TreeAggregate% code the following GAMS code is executed:

loop(PClevels,

 Data(CN,STREAM,TRADE)$(Data(CN,STREAM,TRADE)=0) =

 sum(P_CN$PC_CN(PClevels,P_CN,CN), Data(CN,STREAM,TRADE))
);

Note: running GAMS to perform tree aggregation can take some time, hence we didn’t aggregate over COMEXT2006 but only took the piece of data we are interested in.
Using SQL2GAMS in MetaBase
With SQL2GAMS you can easily create a GDX file from any database using a SQL query. The most powerful way of doing this is by making a SQL query that contains parameters. You then only have to supply parameters to run SQL2GAMS and create a new DX file. Suppose the following SQL query in SQL2GAMS:

SELECT * from comext where

Product in (@Product="01","02") and Reporter in (@Reporter="003") and

Partner in (@Partner="001") and Stream in (@Stream=1) and

Year in (@Year=2005,2006);

Now you can use the Product, Reporter, Partner and Year parameters in your GAMS code:

%GetSet% CN

%GetSet% Country2

%GetAlias% COUNTRY21

%GetSet% Stream

%GetSet% Years_1

%GetSet% Trade

parameter comext(CN,COUNTRY2,COUNTRY21,STREAM,YEARS_1,TRADE) "COMEXT SQL data"

*===

* Creating parameter file, ie select products, countries etc.

$set cmdfile "%metabase%comext\comext%sysenv.username%.par"

$onecho > "%cmdfile%"

*-***

Products="01","02","04"

Reporter="001","002"

Partner="003"

Stream=1,2

Years=2004,2005,2006

Output=%metabase%comext\comext%sysenv.username%.gdx

*-***

$offecho

*===

* Running SQL2GAMS2.exe

$call =%metabase%sql2gams2.exe %metabase%comext\comext.inc /par=%metabase%comext\comext%sysenv.username%.par

* Import the data from GDX file

$GDXin %metabase%comext\comext%sysenv.username%.gdx

$load comext

$GDXin

* Show results

display comext
Basically we create a file that contains the values of the parameters needed in SQL2GAMS, i.e. the file “%metabase%comext\comext%sysenv.username%.par” is the temporary file (with the user name, to ensure it is unique). You then call SQL2GAMS to run the SQL query and save the data in the %metabase%comext\comext%sysenv.username%.gdx file. Then we use basic GAMS to load the user data.
Selecting data from a parameter:
In this example we take a parameter and make a selection out of the available data. Note that we use the “command” DeclareSelection to select a part from the original data.

*!In this example we select two countries (Germany and The Netherlands)

*!and we want data for two years (2007 and 2008) for all ItemsCodes and all SubjectElements

%DeclareSelection% FaoProCrops MBTERRITORIES_20

UserMBTERRITORIES_20("79")=yes;

UserMBTERRITORIES_20("150")=yes;

$ontext

*!instead of the two lines above you can use the code below, don't forget the $onmulti

$onmulti

set UserMBTERRITORIES_20

/

 79

 150

/;

$offtext

%MakeSelection% FaoProCrops (MBTERRITORIES_20 ,FaoItemCodes,FaoSubjectElements,YEARS_3)

*_ param1: FaoProCrops

*_ param2: (

*_ param3: MBTERRITORIES_20 <-select only data that was specified by UserMBTERRITORIES_20

*_ param4: ,FaoItemCodes,FaoSubjectElements,YEARS_3)

*===

%DeclareSelection% FaoProCrops Years_3

UserYears_3("2007")=yes;

UserYears_3("2008")=yes;

%MakeSelection% FaoProCrops (MBTERRITORIES_20,FaoItemCodes,FaoSubjectElements, YEARS_3)

*_ param1: FaoProCrops

*_ param2: (MBTERRITORIES_20,FaoItemCodes,FaoSubjectElements,

*_ param3: YEARS_3

*_ param4:)

*===

execute_unload "UserFAOProCrops.gdx",FAOProCrops=UserFAOProCrops;

21. Display format

The following format specifiers are supported in the format string:
	Specifier
	Represents

	0
	Digit place holder. If the value being formatted has a digit in the position where the '0' appears in the format string, then that digit is copied to the output string. Otherwise, a '0' is stored in that position in the output string.

	#
	Digit placeholder. If the value being formatted has a digit in the position where the '#' appears in the format string, then that digit is copied to the output string. Otherwise, nothing is stored in that position in the output string.

	.
	Decimal point. The first '.' character in the format string determines the location of the decimal separator in the formatted value; any additional '.' characters are ignored. The actual character used as a the decimal separator in the output string is determined by the Decimal Separator global variable. The default value of Decimal Separator is specified in the Number Format of the International section in the Windows Control Panel.

	,
	Thousand separator. If the format string contains one or more ',' characters, the output will have thousand separators inserted between each group of three digits to the left of the decimal point. The placement and number of ',' characters in the format string does not affect the output, except to indicate that thousand separators are wanted. The actual character used as a the thousand separator in the output is determined by the Thousand Separator global variable. The default value of Thousand Separator is specified in the Number Format of the International section in the Windows Control Panel.

	E+
	Scientific notation. If any of the strings 'E+', 'E-', 'e+', or 'e-' are contained in the format string, the number is formatted using scientific notation. A group of up to four '0' characters can immediately follow the 'E+', 'E-', 'e+', or 'e-' to determine the minimum number of digits in the exponent. The 'E+' and 'e+' formats cause a plus sign to be output for positive exponents and a minus sign to be output for negative exponents. The 'E-' and 'e-' formats output a sign character only for negative exponents.

	'xx'/"xx"
	Characters enclosed in single or double quotes are output as-is, and do not affect formatting.

	;
	Separates sections for positive, negative, and zero numbers in the format string.

The locations of the leftmost '0' before the decimal point in the format string and the rightmost '0' after the decimal point in the format string determine the range of digits that are always present in the output string.

The number being formatted is always rounded to as many decimal places as there are digit placeholders ('0' or '#') to the right of the decimal point. If the format string contains no decimal point, the value being formatted is rounded to the nearest whole number.

If the number being formatted has more digits to the left of the decimal separator than there are digit placeholders to the left of the '.' character in the format string, the extra digits are output before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string can contain between one and three sections separated by semicolons.

One section: The format string applies to all values.

Two sections: The first section applies to positive values and zeros, and the second section applies to negative values.

Three sections: The first section applies to positive values, the second applies to negative values, and the third applies to zeros.

If the section for negative values or the section for zero values is empty, that is if there is nothing between the semicolons that delimit the section, the section for positive values is used instead.

If the section for positive values is empty, or if the entire format string is empty, the value is formatted using general floating-point formatting with 15 significant digits. General floating-point formatting is also used if the value has more than 18 digits to the left of the decimal point and the format string does not specify scientific notation.

The following table shows some sample formats and the results produced when the formats are applied to different values:
	Display format/value
	1234
	-1234
	0.5
	0

	
	1234
	-1234
	0.5
	0

	0
	1234
	-1234
	1
	0

	0.00
	1234.00
	-1234.00
	0.50
	0.00

	#.##
	1234
	-1234
	.5
	

	#,##0.00
	1,234.00
	-1,234.00
	0.50
	0.00

	#,##0.00;(#,##0.00)
	1,234.00
	(1,234.00)
	0.50
	0.00

	#,##0.00;;Zero
	1,234.00
	-1,234.00
	0.50
	Zero

	0.000E+00
	1.234E+03
	-1.234E+03
	5.000E-01
	0.000E+00

	#.###E-0
	1.234E3
	-1.234E3
	5E-1
	0E0

[image: image114.png]

